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Foreword 

Twenty years after the workshop on Coastal and Marine applications of SAR the SeaSAR2023 
workshop returned to Svalbard from 2-6 May 2023 (https://seasar2023.esa.int). The workshop 
was sponsored by ESA and organized jointly with the Nansen Environmental and Remote 
Sensing Center (NERSC), the University Centre of Svalbard and Svalbard Integrated Arctic 
Earth Observing System (SIOS).  
 
SeaSAR2023 was arranged around keynote presentations and thematic discussions in plenary 
followed by thematic panel working group discussion and reporting. The themes included:  
 

• Wave Retrievals  
• Near Surface Wind Retrievals and Detection of Extremes  
• Doppler Shift Retrievals  
• Sea Ice Retrievals  
• Sensor Synergy  
• Methodology and Techniques  
• Applications (Oil Spill, Ship Detection, etc)  
• Future Missions  

 
Covering these 8 themes the main workshop objectives included: 
  

• Review state-of-the-art in SAR-based geophysical parameter retrievals.  
• Identification of knowledge gaps and deficiencies.  
• Novel approaches for advancing scientific research and applications.  
• Importance and needs for validation.   

 
The workshop brought together around 80 experts and researchers (see list of participants) from 
around the world to share the latest advancements and challenges in coastal and marine 
applications of satellite-based Synthetic Aperture Radar (SAR) technology. In addition, 76 
individuals attended the on-line WebEx transmissions of the plenary and the eight breakout 
sessions throughout the week. The YouTube broadcasting of the first day plenary session was 
viewed 148 times, mostly in real-time.  
 
Thanks to more than 3 decades of continuity of SAR missions the coastal and marine SAR 
scientific research and applications community have significantly advanced the quantitative 
understanding of SAR imaging capabilities. This is highlighted in these Proceedings of the 
SeaSAR 2023 regarding upper ocean currents and mesoscale structures, wave spectra, internal  
waves, sea ice field, surface slicks, near surface wind fields, marine atmosphere boundary layer  
processes and extremes as well as advances in methodologies and techniques and applications  
for oil spills and ship detection. Moreover, the outlook beyond 2030 and towards 2040 clearly  
evidences the continuity and sustainable access to data from future approved satellite SAR 
missions. However, as pointed out during the workshop there are deficiencies and challenges 
regarding design and implementation of a more comprehensive satellite SAR-based 
calibration-validation approach, jointly with systematic use of sensor synergy across the broad 
range of complementary satellite radar altimeters, scatterometry, interferometry, and high-
resolution optical radiometer and spectrometer. This will require dedicated international 
collaboration with involvement of the space agencies, in particular to enable multi-frequency 
and multi-look direction SAR-based observations with shorter imaging interval. Combined 
with continuous free and open available SAR data this will strengthen the generation of training 
datasets for machine learning development. 
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Multiparametric Sea State Fields from Synthetic Aperture Radar using 
Method combining CWAVE Approach and Machine Learning  
 
Andrey Pleskachevskya, Björn Tingsa, Sven Jacobsena 
 
a DLR, Maritime Safety and Security Lab Bremen, Am Fallturm 9, 28359 Bremen, Germany 
Andrey.Pleskachevsky@dlr.de 
 
Abstract 
 
This study presents the algorithm SAR-SeaStaR (SAR Sea State Retrieval) for estimating series 
of integrated sea state parameters from satellite-borne synthetic aperture radar (SAR): total 
significant wave height Hs, dominant and secondary swell and windsea wave heights, first and 
second moment wave periods, mean wave period and period of wind sea. SAR-SeaStaR applies 
a combination of classical approach using linear regression with machine learning. It comprises 
the complete processing chain with a series of steps each needed to reach high accuracy: 
denoising, filtering image artefacts, SAR features estimation and control, model functions 
(linear regression and machine learning models) for estimation of sea state parameters and 
control of results using filtering procedures. SAR-SeaStaR is applied to C-band Sentinel-1 (S1) 
Interferometric Wide Swath Mode (IW), Extra Wide (EW) and Wave Mode (WM) Level-1 
(L1) and to X-band TerraSAR-X (TS-X) StripMap (SM) products. The wide scenes are 
processed in raster format, resulting in continuous sea state fields. For each S1 WV 
20 km × 20 km imagette, averaged values of each sea state parameter are derived. Validated 
with worldwide data the reached RMSE for Hs is 0.25 m for S1 WV, ~0.35 m for TS-X SM, 
~0,50 m for the coarser S1 IW and ~0.60 m for S1 EW. The method was realized in Sea State 
Processor (SSP) software using modular architecture and allowing processing SAR-data from 
different satellites and modes in near real time (NRT). 
In scope of ESA’s SARWave study [1] the S1 IW archive was processed for 2020 with a raster 
of 5 km (ca. 1,600 subscenes/image). The validation with MFWAM (CMEMS, [2]) model 
results in an RMSE=0.51 m for significant wave height (Hs) and 0.78 s for crossing zero wave 
period (Tm2).  
 
1. Methodology  
 
The ongoing development of space-borne SAR sensors together with corresponding data 
transfer and data processing infrastructures has made a series of oceanographic applications 
possible in near real time (NRT), e.g. [3,4,5]. Also, in the past few years, machine learning 
techniques have taken a leading position in science, as their results are superior to those of 
analytical and simple empirical solutions when sufficiently large databases are available. Even 
though a few years ago, these applications did not noticeably provide more accurate solutions 
than the classical approaches, today they already exceed them. For example, in 2017, the 
accuracy of Hs obtained by applying neural networks (NN) in comparison to a traditional 
CWAVE [6] method had not improved significantly (RMSE of ca. 0.50 m for Hs) [7], whereas 
by using a deep learning technique in 2020 the accuracy had significantly been improved to an 
RMSE of around 0.30 m [8]. In last year, the accuracy of ca. 0.25 m was reached [9].  
 
When comparing the application of the empirical approaches based on linear regression (LR) 
models and machine learning (ML) models, the following can be noted: the advantage of the 
LR is that an analytical solution exists. The coefficients can be obtained comparatively quickly, 
extensive machine learning training is not necessary. Although the linear solution is inferior in 
accuracy to that obtained by adding ML, this solution is already stable with around 1/10 samples 
needed for ML by a normal distribution of data used for tuning. In addition, as practice shows, 
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LR extrapolates much more successfully, if the modelled conditions are outside the training 
data conditions while the ML models can give an error with outliers significantly exceeding 
three times the RMSE.  
 
Further, in addition to ML training (can take months), the developed ML model is many orders 
of magnitude larger (takes Gigabytes) than the list of coefficients for the LR model (takes 
Kilobytes). LR outperforms ML in terms of parsing speed of the model, which is important for 
NRT services. This point is important, as a migration of the sea state processing for direct 
installation on a satellite for on-board-processing has been developed [10]. In this case, no huge 
amount of SAR raw data will be transferred from satellite to earth, before the processing can 
be done, but only already derived sea state parameters. This technology will significantly 
simplify the data transfer and reduce the delay. 
 
Based on all these reasons, the proposed SAR-SeaStaR algorithm combines both: LR (based on 
CWAVE approach [6] extended by series of additional features [9]) and ML model (using 
support vector machine (SVM) technique) for sea state processing. The solution of LR model 
(Hs) is used as first guess value for ML (additional feature) and also is applied for control of 
results. 
 
2. Algorithm basic parameters  
 
In a classic way, the estimation of sea state parameters is based on a normalized radar cross-
section (NRCS) analysis of subscenes. One of the basic variables represents the SAR image 
spectrum obtained using fast Fourier transformation FFT applied to the ground range detected, 
radiometrically calibrated, filtered, denoised land-masked and normalised subscenes with a size 
of 1,024×1,024 pixels in wave number domain as introduced in [5]. SAR features estimated from 
a subscene are of five different types: 
 

− NRCS and NRCS statistics (variance, skewness, kurtosis, etc.).  
− Geophysical parameters (wind speed using CMOD-5 algorithms for C-band [11] and 

XMOD-2 for X-Band [11]).  
− Grey Level Cooccurrence Matrix (GLCM) parameters (entropy, correlation, homogeneity, 

contrast, dissimilarity, energy, etc.). 
− Spectral parameters, based on image spectrum integration of different wavelength domains (0-

30 m, 30-100 m, 100-400 m, etc.) and spectral width parameters (Longuet-Higgins, Goda). 
− Spectral parameters using products of normalized image spectrum with orthonormal functions 

(CWAVE approach) and cutoff wavelength estimated using autocorrelation function (ACF). 
 
3. Sea state processor (SSP)  
 
SSP was designed in a modular architecture for S1 IW, EW, WV and TS-X SM/SL modes. The 
DLR Ground Station “Neustrelitz” applies the SSP as part of a near real-time demonstrator 
service that involves a fully automated daily provision of surface wind and sea state parameters 
estimated from S1 IW images of the North and Baltic Sea. Due to implemented parallelization, 
a fine raster can be processed. For example, S1 IW image with coverage of 200 km × 250 km 
can be processed using a raster with 1 km sized grid cells (~50,000 subscenes) during minutes. 
Each of maritime information products, i.e. sea state retrieval, wind speed retrieval, ship 
detection and AIS defines each one independent data layer. The data layers are combined for 
processor-internal information exchange and presentation to the operator [9].  
 



 
Figure 1: Example of eight sea state fields processed from S-1 IW scene with ~1600 km by ~200 km coverage 
acquired during a storm in North Atlantic with Hs reaching ~14 m 
 
Using the SSP, the complete archive of S1 WV data from December 2014 until February 2021 
with around 60 overflights/day, each including around 120 imagettes, was processed. The 
validation using the WFWAM/CMEMS [2] model resulted in an RMSE of 0.245/0.273 m for 
wv1/wv2 imagettes, respectively. Comparisons to 61 NDBC buoys [13], collocated at distances 
shorter than 50 km to worldwide S1 WV imagettes, result into an RMSE of 0.41 m. The data is 
available to the public within the scope of ESA’s climate change initiative CCI [14].  
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1 Introduction

The normalized radar cross section (NRCS) from Synthetic
Aperture Radar (SAR) depends on the short-scale roughness of
the ocean surface[10]. Modulations of the NRCS result from the
presence of long gravity waves, such as swell. Since the 1970s
these intensity modulations have been studied to infer wave
parameters. The mapping of wave spectra into SAR intensity
spectra[5, 8] led to the first retrieval algorithms[2], which are
now operational for SAR satellite missions such as Sentinel-1.

Distortions of intensity by long waves have also been ob-
served in high-resolution delay/Doppler altimetry, which af-
fects the accuracy to which geophysical parameters can be
retrieved[9]. The limited along-track resolution prevents the
interpretation of swell-related waveform distortions. With Fo-
cused SAR-altimetry processing, which is applicable to de-
lay/Doppler altimeters, it is possible to compute SAR spec-
tra from distortions in the waveform tails in a comparable
way as the side-looking SAR systems. Instead of two ambi-
guities in side-looking SAR[4], the SAR-altimetry spectra con-
tain four ambiguities because both sides of the ground track
are illuminated[1]. Under moderate sea states it should be pos-
sible to retrieve swell-wave parameters from nadir altimeters.
However, an inversion or retrieval of swell-wave parameters has
not been performed yet as the SAR-altimetry spectra are still
poorly understood.

This paper will describe SAR-altimetry spectra in more de-
tail using a closed-form solution and simple model simulations,
which are compared to Sentinel-6 data. It extends the de-
scription of Altiparmaki et al.[1] and introduces the concept
of the cross-spectral stack, a set of cross-spectra using multiple
sublooks from the overpass. We will show that the cross-spectra
vary during the overpass, which can help to constrain the esti-
mation of swell-wave parameters.

2 Closed-form model

The closed-form model [5, 8], suffers from limitations and is not
accurate for the steep incident angles of nadir altimetry (more
details in Kleinherenbrink et al. (2023), in preparation). How-
ever, the closed-form model can provide a local approximation
for the observed spectrum and helps to understand the SAR-
altimetry spectral properties. We define the two-dimensional

SAR spectrum for the right side of the ground-track as [4]

P (kx, ky) =
1

(2π)2
e−k2

xρxx(0,0)−k2
yρyy(0,0)−kxky(ρxy(0,0)+ρyx(0,0))∫ ∫

ek
2
xρxx+k2

yρyy+kxky(ρxy+ρyx)Le−i(kxx+kyy)dxdy,

(1)

with L = 1+ ρII + ... ρab cross-correlation functions computed
from ocean-wave spectrum S(kx, ky) and transfer functions for
ground-range shifts, Doppler shifts and tilt modulation as [6, 4]

Tx = − 1

tan(θ)

Ty = −i
R

V
ωk

TI = −ikx
1

σ0

δσ0

δθ
,

(2)

where θ is the local incident angle, R/V the reciprocal of the
angular satellite velocity, ωk the angular velocity of the ocean
waves and σ0 the NRCS. This formulation explicitly takes into
account the non-linear range shifts (range bunching). The ex-
ponential terms outside of the integral provide us a clue on
the resolution in the along- and cross-track directions, approx-
imated as

λal ∝ π
√
ρyy(0, 0) = π

H

V

√
σ2
v

λct ∝ π
√

ρxx(0, 0) = π

√
σ2
e

tan2(θ)
= π

SWH

4 tan(θ)
,

(3)

with σ2
v the velocity variance [7], and the Significant Wave

Height (SWH) as a function of the elevation variance σ2
e . This

yields an ellipsoidal roll-off in the spectral domain. In case the
range direction and the azimuth direction are not perpendicu-
lar, the orientation and size of the ellipse changes.

3 Numerical model

A surface is modelled on a regular grid using as input an
Elfouhaily wind-wave spectrum[3] and a Gaussian swell-wave
spectrum. Using Discrete Fourier Transforms we compute the
elevation h, upward velocity vr and two-dimensional slope. The
local in-plane and out-of-plane incident angles are used to com-
pute the tilt modulation using the well-known equation for spec-
ular reflections[10]. For the zero-Doppler case, the surface ve-
locity is used to reproject scatterers in the Doppler along-track
direction

∆y =
R

V
vr (4)



Figure 1: Absolute values of numerically modeled satellite nadir altimetry cross-spectra based on ten realizations at five along-
track distances. The inputs consist of swell systems with a peak wavelength of 277 m propagating at 45 (top) and 135 (bottom)
degrees from cross track (right), and a wind-sea system based on a wind speed of 10 m/s, a fetch of 200 km at a mean direction
of 45 degrees from cross track.

Figure 2: Imaginary values of numerically modeled satellite nadir altimetry cross-spectra based on ten realizations at five along-
track distances. The input consists of a swell system with a peak wavelength of 277 m propagating at 45 (top) and 225 (bottom)
degrees from cross track (right), and a wind-sea system based on a wind speed of 10 m/s, a fetch of 200 km at a mean direction
of 45 degrees from cross track.



and the elevation to move scatterers is the ground-range (cross-
track) direction by

∆x = − 1

tan(θ)
. (5)

The latter two effects are responsible for the resolution losses in
the along-track and the cross-track direction, respectively, and
also for the accompanied velocity and range bunching.

4 Cross-spectral stack

The 3dB-beamwidth of radar altimeters is typically in the or-
der of 1.3 degrees. At a platform velocity of approximately 7
km s−1 scatterers are a few seconds in view. Only using part
of the overpass for SAR processing is sufficient to get the nec-
essary along-track resolution for spectral analysis. By dividing
the overpass in multiple sublooks, we get observations and spec-
tra of the surface from various view angles leading to varying
spectral densities. Cross-spectra are computed from two con-
secutive sublooks [4], which provides additional information on
the phase change of the intensity modulations.

Without considering the phase, the history of the spectral
density emerging from a swell signal varies by four effects. First,
the tilt modulation varies as the relative satellite position with
respect to the slopes changes. Second, the ground-range direc-
tion is at non-zero Doppler not aligned anymore with the cross-
track direction. Surface elevations still cause reprojections of
scatterers in the cross-track direction, but their effects are ’fil-
tered’ and depend on the width of the Doppler strip, which
leads to an adjustment of Eqs. 2 and 5. Third, vertical velocity
causes Doppler shifts that move scatterers in the along-track
direction. However, as they are constrained by their range, re-
projection occurs effectively over the range isoline. This intro-
duces a cross-track shift and adds a term to the ground-range
transfer function Tx (Eq. 2) and to the shift in Eq. 5. Fourth,
the range and Doppler shifts are not perpendicular anymore,
which causes the cross-term outside of the integral (Eq. 1) to
becomes non-zero. This will rotate the cut-off and lowers the
power spectral density in two quadrants.

The combined effect results in different power spectral den-
sity variations in the spectral quadrants (Fig. 1). It appears
that the power spectral density in a non-zero Doppler cross-
spectrum depends on the wind-wave and swell directions. The
imaginary terms of the cross-spectra also vary during the over-
pass (Fig. 2). The phases or imaginary parts of the cross-
spectra cannot directly be coupled to the wave direction, as the
location of maximum intensity also varies due to the chang-
ing phases of the three imaging mechanisms by the geometrical
variations induced by the satellite velocity. The relative phase
change of the ’static’ intensity modulation (comparable to SAR,
see Nouguier et al. (2023), in preparation) interferes with the
phase change caused by wave motion. The cross-spectral stack
might therefore be used to remove ambiguities, but it is non-
trivial and the precise mechanism is not fully understood yet.

5 Conclusions

This study provides the most extensive description of the SAR-
altimetry spectra up to date. It also introduces the cross-
spectral analysis for SAR altimeters. The long overpass time

of the altimeters allows to estimate a cross-spectral stack. The
cross-spectral stack adds information for retrieval algorithms,
but is not yet fully understood. It also shows potential to re-
move swell-direction ambiguities.

The next step is the inversion of swell-wave parameters from
the SAR-altimetry cross-spectra. If swell-wave parameters are
retrieved from altimeters this will greatly increase the number
of ocean-wave observations. In combination with the backscat-
ter (roughness), the SWH and the velocity variance, the SAR
altimeter will have a more synoptic view of the ocean surface.
Finally, the additional information resulting from such an in-
version would help to constrain the sea-state bias.
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Abstract

This paper presents preliminary results on the use of a long-short-term memory (LSTM) deep recurrent neural
network to estimate 1D wave density spectra from Sentinel-1 (S1) Interferometric Wide (IW) swath images. In
total, 165 locations in the Baltic Sea are used to extract image spectra from custom ground-range detected data.
The training data set consists of approximately 80000 individual data points divided into training, validation,
and testing data sets by 70-15-15, respectively. WAM wave model spectra from the MET Norway repository are
used as ground truth. The LSTM model shows correlations greater than 0.80 between wave periods of 2 and 9
seconds for the wave density spectra.

1. Introduction
Estimation of various surface wave parameters (e.g. significant wave height HS) from SAR imagery has been the
focus of many studies [1], [2] and [3]. However, the accurate retrieval of 2D wave density spectra has been the
ultimate goal of the SAR data. Various inverse methods have been developed to extract 2D wave information
for the open ocean [4], [5] where high resolution wave mode data are acquired and swell waves dominate the sea
state. The lack of long-swell waves in closed wind-wave dominant regional seas, e.g. the Baltic Sea [6], [7], and
lower-resolution ScanSAR (TOPS mode for S1) acquisitions have been the limiting factor for using the inverse
methods for such environments.

Figure 1: Map of the Baltic Sea with locations
of SAR data collection. Colors represent the
amounts of SAR match-ups with model spec-
tra.

Figure 2: NORA3 significant wave height dis-
tribution over mean propagation directions
(going to) for the matching dataset.

Recently, recurrent deep learning neural network methods (e.g., long-short-term memory - LSTM [8]) have been
used to estimate 1D wave density spectra from S1 IW data in the Baltic Sea [9]. The aim of this study is to extend
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the data set by using NORA3 wave model spectra and train LSTM networks to estimate wave density spectra
between 2 and 10 s with a much larger and more variable data set compared to the previous study.

2. Data and Methods

2.1 NORA3 data
We used the NORA3 wave hindcast, which is based on the WAM wave model [10], [11]. The hindcast covers the
pan-Arctic domain, including also the Baltic Sea with a 3 km resolution. However, the spectra were only outputted
with a 30 km resolution. The model spectra are discretized using 30 frequencies logarithmically spaced in the range
of 0.0345-0.5476 Hz and 24 equally spaced directions covering a full circle.

2.2 SAR processing
S1 IW Single Look Complex (SLC) sub-images were calibrated and speckle filtered with a Frost (5x5) filter. During
the multi-look operator, pixels were not averaged to represent squares, and the images were left in radar projection.
The image spectra (ISP ) are calculated from both polarisations (V V and V H) with the fast Fourier transform
(FFT). Subsequently, the values of the ISP components ISPx and ISPy were interpolated to fixed wavelength
values between 215 and 30 m (39 values with variable intervals). Image spectra and other metadata (e.g. satellite
heading (PASS), incidence angle (IA), image texture, etc.) were saved for later processing. SAR data was collected
around the location of the model spectra (Figure 1) from the beginning of 2015 until the end of 2021. On aver-
age, around 550 independent sub-images were processed at each location. The resulting distribution of HS in the
mean propagation direction is shown in Figure 2. In total, around 80000 collocation pairs were formed for the study.

2.3 LSTM configuration and experiments
Spectra estimation was performed by a deep LSTM type neural network. The network architecture is shown in
Figure 3. The best configuration was found when the input data for the LSTM model had a shape of (40, 4),
where the four variables are IA and ISPV V x , PASS and ISPV V y , IA and ISPV Hx , PASS and ISPV Hy . Before
training, the values IA and PASS are normalized between 0 and 1; the logarithm base e is applied to ISP and
wave energy.

3. Results and discussion
Bin-by-bin comparison in Figure 4 between test data and LSTM model predictions show correlations greater than
0.80 for all predicted spectra between 2 and 9 s, which corresponds to most of the sea states dominated by wind
waves. Although the correlation coefficient for the energy density around 10 s in [9] is greater, the prediction
accuracies for higher frequencies are similar or even better for the current study. Moreover, the custom SAR
processing (without squaring pixels during multi-look) allows for avoiding complex image upsampling which was
required previously to estimate energies in higher frequencies.

Figure 3: LSTM model structure.

Figure 4: LSTMmodel prediction average cor-
relation coefficients on test data for wave en-
ergy per frequency/period band and standard
deviation of errors.
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Sentinel-1 C-SAR platforms (A/B) acquire small wave mode images covering most of the global ocean up to ~100 km close 
to the coast [1]. Ocean surface wave information is routinely extracted from these images such as in the ESA Sentinel-1 level-
2 ocean swell (OSW) spectra product [2]. The swell spectra derived from SAR (including Sentinel-1) are limited by the azimuth 
cut off wavelength and generally cannot capture high frequency ocean waves. Despite this limitation, they are useful in 
monitoring and analysing longer scale swell systems, and prior to CFOSat’s (China France Oceanography satellite) launch, 
they were the only satellite-derived ocean swell spectra measurements that were routinely produced. 

 
The algorithm that sits behind the production of the OSW product has matured over time through several updates [3,4]. It 

would be ideal to reprocess the whole Sentinel-1 wave mode archive at each OSW processor update to have a product that is 
the most accurate and consistent in time, but that is not currently the case and may be too costly a prospect. Nevertheless, it is 
important to examine the temporal consistency of the OSW product before potentially using these data for various applications. 

 
In this brief work, a temporal consistency analysis of the OSW product has been carried out in the Australian region. In this 

region, there are not many wave buoy measurements as one moves further away from the coast. Therefore, one viable option 
for a mission duration temporal consistency analysis is through comparisons with regional wave model runs. We have taken 
this approach and have carried out the comparison of the OSW product against an Australian-produced global wave model 
(WaveWatch III) hindcast [5]. The matching criteria between OSW observations and the wave hindcast are within 100 km and 
+/- 30 mins. The wave spectra from the hindcast are also truncated using the ellipsoidal azimuth cut off from the matching 
OSW spectra as done in [6].  

 
The comparison is performed using bulk statistics of significant wave height, zero-crossing period, and mean direction (Hs, 

tm02, and dm) to assess the consistency of wave parameters over time. In each comparison, the time series of the mean monthly 
bias and standard deviation (Sentinel-1 - WW3) are analysed after grouping the data by platform, polarisation, incidence angle, 
and Sentinel-1 IPF (Instrument Processing Facility) versions [4]. This approach gives clues into the dependency of the wave 
parameters/swell spectra on the above characteristics and the processor version. The results for the three cases are shown in 
figs. 1-3. 
 
The results clearly show that the biases and standard deviations are reduced with improvement to the Sentinel-1 IPFs generally 
for all combinations of satellite characteristics with only some exceptions. Especially, the results since IPF 3.30+ are quite 
encouraging. Resources permitting, there is value in reprocessing historical Sentinel-1 wave mode data with the latest IPF 
version. Until that is possible, the users of this dataset need to consider its limitations due to evolving IPF versions before their 
use.  
 
A subsequent analysis on potential calibration consistency of the Sentinel-1 affecting wave mode data was also carried out. 
The calibration consistency was analysed on the normalised radar cross section (NRCS) time series. The NRCS is a function 
of incidence angle, operating frequency, and transmit-receive polarisation. Daily NRCS mean and standard deviation on 
Sentinel-1 wave mode time series were computed to check for inconsistencies after grouping the data by platform, incidence 
angle, polarisation and IPF version (fig. 4). The NRCS stats of Sentinel-1 A and B wave mode level-2 data for overlapping 
periods, matching polarisation and incidence angles closely follow each other and no alarming inconsistency is observed. 
Slightly higher fluctuation of mean NRCS value is possibly observed in the beginning of the time series (IPF 2.50, fig. 4). 



 
Figure 1: (left y-axis) ∆𝐻𝑠 (Sentinel-1 – WW3) monthly mean and standard deviation time series of Sentinel-1A/B wave 

mode data as a function of platform, polarisation, and incidence angle, and (right y-axis) WW3 monthly mean 𝐻𝑠 computed 
against Sentinel-1 A A and B matchups. Sentinel-1 IPF version evolution through time is highlighted.  

 
 

 
Figure 2: Figure 7: (left axis) ∆𝑡𝑚02 (Sentinel-1 – WW3) monthly mean and standard deviation time series of Sentinel-

1A/B wave mode data as a function of platform, polarisation, and incidence angle, and (right axis) WW3 monthly mean 𝑡𝑚02 
computed against Sentinel-1 A and B matchups. Sentinel-1 IPF version evolution through time is highlighted.  

 

 
 
 



 
Figure 3: Figure 8: (left axis) ∆𝑑𝑚 (Sentinel-1 – WW3) monthly mean and standard deviation time series of Sentinel-1A/B 

wave mode data as a function of platform, polarisation, and incidence angle, and (right axis) WW3 monthly mean 𝑑𝑚 computed 
against Sentinel-1 A and B matchups. Sentinel-1 IPF version evolution through time is highlighted.  

 

 
Figure 4: Figure 5: NRCS daily mean and standard deviation time series of Sentinel-1A/B wave mode data as a function of 

platform, polarisation, and incidence angle. Sentinel-1 IPF version evolution through time is highlighted. 
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Abstract.
Ocean surface wave full directional spectrum as estimated directly from measurements obtained 
with a spar buoy is used in order to assess the wave spectrum retrieval procedure from synthetic 
aperture radar images of the sea surface. Our ultimate goal is to obtain a rather comprehensive 
view of the dynamical behaviour of surface waves, while we focus our study in sea state conditions 
under varying winds, when frequently mixed sea and swell systems are present. Encountered field 
conditions are characterized by non-equilibrium wind-wave systems and uppermost ocean 
dynamics under rapidly varying wind field. Atmospheric cold front passage through the measuring 
site imposed a unique wind-wave system information, especially under the occurrence of cases 
when swell propagation opposes locally generated wind-waves. Of particular importance is the 
variety of environmental conditions and the analysis of the wave field making use of synthetic 
aperture radar images of the sea surface. Making use of quasi-linear inversion scheme (Krogstad 
et al, 1994) the wave field at both sides of the atmospheric fronts are analyzed. Limitations of the 
quasi-linear scheme being used in association with the full non-linear behavior of the SAR imaging 
process are recognized, nevertheless results are promising and an extensive assessment of the 
method is carried out with the use of several SAR images acquired during the various months sea 
trials in the Gulf of Mexico. Furthermore, the inversion to retrieve ocean wave spectra is assessed 
taking into account some spectral features such as directional spread and the presence of more 
than one wave systems. 

Introduction.
Air-sea interaction studies represent a key component of CIGoM, the National Consortium for 
scientific research, technology integration and consulting services, specialized in multidisciplinary 
projects to assess and manage environmental impacts caused by the oil and gas industry, in the 
marine ecosystems of the Gulf of Mexico. As part of CIGoM buoy network, Oceanography and 
Marine Meteorology Buoys (BOMM for Spanish acronyme) were developed, built, integrated and 
deployed in the Gulf of Mexico, between 2016 and 2019. This type of buoys is similar to Air-Sea 
Interaction Spar (ASIS) buoys already deployed for previous studies (Graber, et al., 2000; Ocampo-
Torres et al., 2011).
Direct measurements at sea are essential to improve our knowledge of air-sea interaction 
processes, which play a key role in determining the sea state and weather and influencing our 
planet climate and its changes. The description of waves through directional wave spectrum is 
essential and  we aim to establish the best relation with momentum and energy fluxes between 
ocean and atmosphere. Furthermore, our research is focused in non-equilibrium cases, when wind 
is varying, for instance, instead of dealing only with analysis of stationary and homogeneous 
forcing wind fields. Ultimately, improvements in our knowledge of upper ocean and lower 
atmosphere processes will lead us to implement better models with more precise 
parameterizations to be used to forecast weather and climate.
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Direct measurements of relevant environmental and dynamical variables are required to be 
complemented with observations from a different points of view that can be achieved through 
remote sensing techniques. Synthetic aperture radar images of the sea surface are a proper 
example of information that can be used to retrieve  ocean surface wave parameters and 
directional spectrum, as well as other wind field characteristics. Even more, SAR images would 
provide us with a synoptic view of the ocean surface in the area where field campaign 
measurements were acquired.
It is the purpose of this work to estimate directional wave spectra under non-stationary conditions in 
order to determine the waves effect on air-sea momentum transfer and the influence of Stokes drift 
in the upper ocean currents velocity. Spatial variability of the wave field is to be determined through 
SAR images in order to relate it to momentum fluxes behaviour, specially when non-homogeneous 
wind field is present. Furthermore, the inversion to retrieve ocean wave spectra is assessed taking 
into account some spectral features such as directional spread and the presence of more than one 
wave systems. The quasi-linear inversion scheme proposed originally by Krogstad et al. (1994) and 
used by Vachon et al (1994), is being considered in this work.

Field campaign.
As part of CIGoM oceanographic buoys network, BOMM1 (an oceanography and marine 
meteorology spar buoy) was deployed at 24o 36.20' N (see Fig. 1) and 96o 37.50' W (see Fig. 1), 
approximately 98 km offshore Tamaulipas coastline at an 840-m depth location. BOMM1 was 
operational recording gathered data onboard in solid state disks and transmitting real time hourly 
data from 18 July 2018 until 19 April 2019, when service vessel Bourbon Fulmar reported BOMM1 
adrift and towed it to Tampico Port waterway entrance. 

Figure 1. BOMM1 and tether buoy at Perdido region in the Gulf of Mexico.

During the BOMM1 operations period several SAR images were acquired in the area of interest as 
can be seen in Fig. 2, where time series of wind speed significant wave height are also shown. 
Atmospheric fronts were encountered when some of those images were acquired.
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Figure 2. Wind speed and significant wave height from BOMM1 at Perdido region (Gulf of Mexico). Vertical 
lines indicate acquired SAR image (TerraSAR-X or TanDEM-X; Sentinel-1A or -1B).

Perspectives.
Detailed analysis of directional wave spectra are carried out and the advantages as well as the 
limitations in the cuasi-linear scheme to retrieve wave spectrum from SAR images are determined. 
Special cases are being considered such as this depicted in Fig 3.

Figure 3. SAR image from Tandem-X SM 20181016T002302h UTC, and sub-images 2 and 12. 
Bottom plots are directional spectra from BOMM1 at 00h and 01h same day.
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Abstract 

ind blowing over the sea surface generates wind waves that grow in time and space by absorbing wind energy. 

Wind waves cover a wide range of wavelengths from a few centimeters to several hundred meters. The shortest 

centimetric waves are used as a proxy to measure the sea surface wind speed and the longest waves, often 

referred to as swell, can be estimated through a quasi-linear inversion to provide directional swell spectra [1]. As for the 

locally generated wind waves, a.k.a. wind-sea, the azimuthal cut-off limitation prevents from imaging this component of 

the wave spectrum. Yet, the azimuth cut-off is itself a signature of the wind sea component and similarly, other wind-sea 

related variables can be derived from the SAR measurements. 

This paper focuses on a new method to estimate the wind-sea significant wave height (Hs) based on Sentinel-1 Synthetic 

Aperture Radar (SAR) Level-2 products using a deep-learning (DL) approach. The method was tested on data from 

Sentinel-1A and -1B Wave Mode (WV) acquisition for both incidences angle 23.8° (WV1) and 36.8° (WV2) collocated 

with global numerical wave spectra given by WAVEWATCH III (WW3) over the period from July 2021 to August 2022. 

We use a Deep Neural Networks (DNN) Regressor to relate the input geophysical waves parameters derived from SAR 

and the output WW3 wind waves Hs. As a first experimentation, the DNN performs well on the tested SAR dataset with 

R2 score more than 0.82 for WV1 data and more than 0.86 for WV2. The newly developed method extends the capability 

of SAR to estimate extreme Hs wind-sea (above 5 m) which are almost difficult to estimate otherwise due to the azimuth 

cut-off limitation. For this work, we also address the problem that machine learning models suffer from, namely class 

imbalance, i.e., when the distribution of wind-sea Hs is skewed, resulting in a disproportionate number of observations 

over the different Hs ranges. Synthetic data are generated and used in such situations to balance the under-representation 

of extreme wind-sea Hs and to train models able to better generalize real wave observations. 

Keywords: SAR wave spectrum, wind waves, Deep Learning, SAR wind speed, wave age, azimuth cut off. 

1. State of the art 

Wind waves are surface waves that derive their energy and their geophysical properties from wind blowing over the sea 

surface. However, the local wind forcing itself is not sufficient to define the local wave properties. While the swell 

component can be rather well imaged and then estimated by SAR instrument thanks to its quasi-linear properties, the 

wind-sea part presents more complex non-linearities and are only partially or totally removed from the SAR spectral 

signature. SAR-derived measurements are therefore difficult to use given the partial and complex spectral coverage of 

the wind waves. Nevertheless, some initiatives have shown the possibility to derive more exhaustive description of the 

ocean state, estimating the significant wave height, comparable to altimeters [2], [3], [4]. Similarly in this study, we attempt 

to estimate the wind-sea component from the SAR measurements even if it is not well imaged by the instrument. Yet, 

wind-sea component impacts the SAR spectral measurements and some SAR-derived parameters such as the sea surface 

wind, the azimuth cut-off, the wave age and the IMACS are closely related to it and can be used as proxies to estimate 

its contribution [5], [6]. The developed methodology is compared to the one currently used to produce the L2 OCN 

products [7], based on ENVISAT-inherited empirical relationship between SAR-derived wind speed and azimuth cut-off 

and WW3 wind sea Hs. 

2. Data and Methods 

a. Data description 

The dataset consists in collocations between S1 wave spectra measurements and geophysical parameters derived from 

the SAR and WW3 numerical wave model outputs over the period from July 2021 to August 2022. On the SAR side, we 

only consider data acquired from Sentinel-1A with the wave mode acquisition (WV1 and WV2) in VV polarization.  

W 



 
Figure 1: Density map for co-located data between the WV1 SAR acquisitions and WW3 over the period from July 2021 to August 2022. 

Figure 1 illustrates the density maps of collocated data for WV1 

(similar for WV2). The full dataset includes more than 348 000 

pairs.  

For this study, several variables were extracted from ESA-

Copernicus WV level 2 (L2 OCN) products identified as 

potential features that are expected to explain the wind-sea 

significant wave height variability. These variables include both 

geophysical information such as wind speed and direction and 

other acquisition information like incidence angle and azimuth 

cut-off. The list of these variables is shown in Table 1. A whole 

feature engineering pipeline has been put in place to prepare 

data for learning. 

As for the target, it is defined as the wind-sea Hs 

estimated from the WW3 spectra. To get such variables, 

the first step is to extract the wind sea spectra from the 

WW3 spectra collocated with the SAR, then we estimate 

the associated Hs. The distribution of this computed 

variable, presented by a range of Hs for both collocated 

WV1 and WV2 dataset, is shown in Figure 2. 

The obtained distribution of wind-sea Hs is not uniform 

and contains extreme values that are poorly represented. 

Initially, this database is used to define a baseline of 

learning performances. Then, it is than submitted to a 

specific balancing task to obtain a more homogeneous 

distribution of wind-sea Hs and to perform model 

accuracy. As for each machine learning model, the database was divided into three parts: a training data set (~122200 

pairs), a validation data set (~26000 pairs) and a test data set (~26000 pairs). 

b. Method 

The first tests are performed using a simple deep learning architecture defined by a Deep Networks Regressor (DNN-

Regressor).  The SAR features are fed into 5 dense layers of 128,64,32,16,8 units respectively with Rectified Linear Unit 

(ReLU) as an activation function. Between each two hidden layers a Batch 

Normalization was applied to perform training. Finally, the wind-sea Hs 

prediction is performed by an output layer with linear activation function.  

This model is trained to minimize the mean squared error (MSE) using 

Adam optimizer with a batch size of 150 samples. A specific learning rate 

decay was applied to improve the optimization. Training was stopped 

when the validation loss did not improve after 10 epochs to avoid 

overfitting. The architecture, learning rate, early stopping and batch size 

was optimized by tuning and only for WV1. The same hyperparameters 

were used to train WV2 model to investigate the incidence angle 

sensitivity. 

SAR Features 

Signal to Noise Ratio (SNR) 
Normalized Radar Cross Section (NRCS) 
Azimuth Cut-off 
SAR wind speed  
SAR wind direction in sensor convention 
SAR wave spectrum Kurtosis 
SAR wave spectrum Skewness 
SAR wave normalized variance 
Incidence angle of acquisition 

Table 1: SAR features used as inputs of the DNN-Regressor. 

 
Figure 2 : Wind-sea Hs count by 0.5m bins for WV1 and WV2. 

Metric WV1 WV2 

Bias -0.02 m -0.04 m 

Standard deviation 0.49 m 0.45 m 

Correlation 0.92 0.93 

R2 score 0.83 0.86 

RMSE 0.49 m 0.45 m 

Table 2: Statistics of model’s performances for 
WV1 and WV2. 



3. Results and perspectives 

a. Results  

The first results obtained are very promising and the two models obtained 

for WV1 and WV2 generalize well on the test data (Figure 3). The 

performances indicators are displayed in Table 2. First, we notice that the 

models suffer a little from high wind-sea Hs values by underestimated them. 

This is starting to appear from Hs > 4m for WV1 and Hs > 2m for WV2. 

This finding is expected because this model has not been tuned as the case 

of WV1. Therefore, this confirms implicitly that there is a sensitivity to 

incidence and that the two modes should be treated separately since the 

acquisition noise differs according to incidence. 

The extreme wind-sea Hs under-estimation is also explainable since they 

are poorly represented in the training distribution as introduced earlier. 

Work is in progress to balance the training data set for all ranges of wind-

sea Hs. 

b. Perspectives 

We have created a dataset of over 348000 collocations 

between SAR features, derived wind-sea Hs from WW3 

and used it to train a DNN-Regressor model that 

predicts wind-sea Hs from SAR features. The obtained 

models underestimate extreme Hs which is tackled by a 

synthetic data generation to balance the training dataset. Figure 4 illustrates the generative potential of extreme Hs for 

the case of WV1 under validation: red bars indicate synthetic data; blue bars indicate initial data; green bars indicate 

assembled data and gray bars for rate of generation. To improve the performance of the two models, new variables will 

be introduced such as IMACS [5]. Then, with this new enriched and balanced database, the architectures will be 

redesigned to consider the sparse and dense nature of each learning SAR feature. The relative contribution of these 

chosen input features will be investigated to quantify their relative importance. The estimation of a SAR-derived wind-

sea component, together with the already existing swell and “total significant wave height” paves the way for complete 

SAR-derived directional wave spectra. 
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1 Introduction

Hasselmann and Hasselmann [2] and Krogstadt [3] paved the
way of understanding the SAR imaging process of ocean waves
by deriving the basic theoretical equations. Later on, Engen [1]
reformulated them using characteristic functions and provided
a stand alone methodology to remove wave propagation am-
biguity using the evaluation of cross-spectra analysis between
sublooks in azimuth. This technique elaborated during ESA
ERS time was then applied on ENVISAT - ASAR acquisitions
and is still currently applied for wave retrieval on Sentinel-1
acquisition over ocean without major evolution since the first
derivation of the algorithm. Ocean wave spectrum retrieval
from SAR observation remains a challenge due to its complex
imaging mechanism and existing operational algorithms mainly
rely on the exploitation of the so-called theoretical close-form.
This close-form equation is a theoretical equation mapping the
ocean wave spectrum into the back-scattered intensity SAR
spectrum. Even if this equation exhibits most of the SAR imag-
ing non-linear aspects (velocity bunching, azimuthal cut-off, ...),
it still misses some key features that have not been correctly un-
derstood up to now. One striking example is that cross-spectra
phase predicted by theoretical approach should be close to the
waves dispersion relationship which is the dominant apparent
displacement on the surface. Data analysis reveals that this
wave dispersion relationship is strongly altered by non-linear
imaging process of the SAR and can not be correctly predicted
with the currently used close-form.

Since the first attempts to derive wave spectrum from SAR
observations, new techniques have been developed to model
and understand the complex imaging process of waves by SAR.
Computational capabilities have strongly evolved and opened
new perspectives in simulating the complete chain of a SAR
acquisitions on realistic synthetic ocean scene. Coupled with
a revisit of the assumptions of the close-form derivations and
foreseen neural-network methodologies, the authors developed
a coherent framework to better understand and model ocean
wave spectrum mapping by existing Synthetic Aperture Radar
systems and support the development of new concept missions.

To exemplify new perspectives offered by the aforemen-
tioned techniques, the authors selected some examples and the
corresponding illustrations where they reveal themselves to pro-
vide interesting insights on the imaging process. In the coming
years, it is planned to revisit the existing Sentinel-1 wave in-
version algorithms and take benefit of these new techniques
to better understand wave mapping by new coming SAR mis-
sions such as Harmony constellation based on innovative bi-
static SAR configuration or Rose-L SAR operating at L band
frequency.

2 The case of reversed swell propaga-
tion direction on Sentinel-1

Since the pioneer work of Engen et al. [1], it is commonly ac-
cepted that the sign of the imaginary part of the cross-spectrum
computed between two looks extracted from Single Look Com-
plex SAR data is directly linked to the ocean wave direction
propagation. The wave displacement between the two looks
(different acquisition time) is indeed assumed to be responsible
for the non-vanishing phase of cross-spectrum between looks
extracted from the azimuth Doppler Bandwidth. The resulting
sign of the complex cross-spectrum is thus usually used to re-
move the ambiguity of the wave direction propagation in wave
retrieval algorithms.

Figure 1 shows a succession of six Sentinel-1 vignettes
(WM1) acquisitions on July 6th 2020 between 15h08m14s and
15h10m40s in the Indian ocean where a long swell is captured
by the sensor. In this specific case, the swell propagates towards
the East direction. In this low latitudes part of Sentinel-1 or-
bit, the SAR range direction is rapidly changing relatively to
the swell direction of propagation. While the swell direction is
located slightly below the range direction on the first vignette
(horizontal axis), it is located above the range axis on the last
acquired vignette with a continuous variation during the inter-
mediate acquisitions.

Figures 2 show the imaginary part of the cross-spectrum for
each acquisition. As observed, the sign of the swell peak energy
is changing along the orbit (brown and purple colors are of op-
posite signs) while a constant positive sign is expected due to
the established easterly swell system. At the middle acquisition
(vignette #4 - 15h09m42s), the energy of the cross-spectrum is
even split by the range axis in two parts with opposite signs.
The theoretical close-form equation is unable to reproduce the
change of sign in the cross-spectrum revealing some unexpected
limitation of the theoretical approach. Several legitimate as-
sumptions could be raised to explain the observed discrepan-
cies such as the inaccuracy of the wave model compared to the
true ground truth or the limiting assumption of the analytical
approach such as the non-Gaussian nature of the ocean waves
or a different look energy weighting leading to an inaccurate
estimation of the separation time between looks. However, for
the presented case, none of these assumptions explain the dis-
crepancies and will be illustrated hereafter.

In real data analysis, it is usually very hard to distinguish
the reasons of this apparent discrepancies between the SAR
measurements and the sea-state conditions. On the contrary,
numerical simulations can be of great help in doing such param-
eters analysis thanks to the ability of disabling other possible
effects. In this case, we relied on the “Remote Sensing Simula-
tion from Space” (R3S) numerical model to explore the possible
parameters that could enter into the aforementioned problem-
atic case. This numerical model is a brute force simulation



Figure 1: Succession of six Sentinel-1A vignettes (WM1) acquired in indian ocean. Vignette #1 was acquired at latitude -56.54
degree and vignette #6 at -48.4 deg. The same long swell (≈500m) is observed on all vignettes and its direction is slowing
crossing the SAR range direction (horizontal axis).

Figure 2: Imaginary part of the cross-spectra (between looks). Brown and purple colors are of opposite sign.. The sign of the en-
ergy corresponding to the observed swell around 500 m wavelength is changing from vignette #1 to vignette #6. Cross-spectrum
#4 exhibits an energy blob splitted around the range axis with parts of opposite signs.



Figure 3: R3S numerical simulation. Left panel is synthetic Sentinel-1 vignette corresponding to vignette #4 of figure 1 and
rigth panel is the corresponding imaginary part of cross-spectrum. On both real and simulated cross-spectrum, we can observe
the energy slpitting over the range axis with opposite signs on each side of it.

intending to model as much physically as possible all the ele-
ments of the SAR observation chain of an ocean scene (ocean
wave properties, scattering mechanisms of rough surface, satel-
lite platform dynamics, antenna, SAR processing, ...).

Figure 3, left panel, shows the simulated imagette which was
generated using the co-localized Wave Watch III wave model
and Sentinel-1 configuration corresponding to the acquisition
date of July 6th 2020 15h0942 (vignette #4). The resulting
imaginary cross-spectrum (right panel) exhibits the same sign
inversion and splitting around the range axis on the simulated
data supporting the fact that non-simulated effects (such as
nonlinear wave statistics, ...) are not responsible of it. To
push further the analysis, another simulation (not shown here)
was processed but with a “frozen swell” meaning that the swell
propagation was disabled during the SAR acquisition simula-
tion. While it was expected to have no imaginary part in the
cross-spectrum (because of the absence of ocean movement), a
significant signal in the imaginary part was found suggesting
that other phenomenon was responsible for some phase in the
cross-spectrum.

A joint theoretical and data analysis on both real and sim-
ulated data revealed that the small variation of the SAR ob-
serving geometry during the acquisition time has a significant
contribution on the sub-look cross-spectra phase. This have
an impact of the swell system signature and shall not be ne-
glected when interpreting the cross-spectra for swell propaga-
tion ambiguity removal or, more generally, on phase exploita-
tion strategies. A simple theoretical model has been developed
to demonstrate the strong impact of this phenomenon on the
cross-spectrum derivation and more specifically on its phase.
We will show that this effect is linked to an important geo-
physical term that has been omitted in the classical literature
leading to an incomplete SAR closed-form equation and, in turn
to possible caveats in the operational wave inversion algorithm
applied to Sentinel-1 products. In fact, considering this term is
also critical to anticipate accurately future SAR missions per-
formances

3 ESA Earth Explorer 10 - Harmony,
understanding bistatic SAR

The European Space Agency has selected Harmony as tenth
Earth Explorer Mission. Harmony is a constellation of two
companion satellites around Sentinel-1 platform. Among other
capabilities, the two Harmony satellites will provide interfero-
metric measurements and bi-static SAR acquisitions. This is
a unique opportunity to better map ocean surface dynamics

thanks to its enhanced azimuthal diversity. Based on the ex-
isting mono-static theoretical close-form, efforts have already
been done by the Harmony scientific team to extend it to the
bi-static case. However, the basic assumptions are still ques-
tionable and their validation with respect to numerical simula-
tions highly desirable. The authors developed joint theoretical
and numerical approaches to better understand the ocean wave
mapping with bi-static SAR and started to explore the bene-
fits of this configuration comparatively to the mono-static case.
Preliminary studies show very encouraging results an reveal new
possible strategies for mitigating SAR undesired effects such as
azimuthal cut-off.

4 ESA SARWAVE project - sea
state retrieval from Sentinel-1 large
swath acquisitions

The scientific teams involved in SARWAVE project (Ifremer-
LOPS, Isardsat, TU Delft, ODL, DLR, CEOS-UP) proposed to
develop and validate novel methods for sea state retrieval from
Sentinel-1 Interferometric Wide Swath (IWS) products. This
project, recently selected by ESA, started some month ago and
recent results will be presented during a dedicated session of
the Seasar 2023 workshop in Svalbard. Some of the method-
ologies presented in this abstract will be used in the algorithms
development workpackage of the SARWAVE project. The lat-
ter is indeed an excellent opportunity to take benefit from the
past and new research outputs dedicated to sea state retrieval
from remote sensors (SAR, optical, altimeter, ...) and to exem-
plify the newly developed algorithm and produced sea-state L2
products over a one-year duration data-set of Sentinel-1 IWS
acquisitions over European seas.
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Directional wave observations from satellite missions play a crucial role to improve integrated sea 
state parameters, particularly swell dominant ones. The global CMEMS wave system is using in 
operations (Near Real Time) both SAR wave spectra from Sentinel-1 and SWIM wave spectra from 
CFOSAT. SAR instrument covers ranges of waves from roughly 200 m to 800 m of wavelength, 
while SWIM detects shorter scale of waves starting from 60 m to 500 m of wavelength. The 
objective of this work is to examine the combined assimilation of wave data from CFOSAT and 
Sentinel-1 missions. We investigated particularly the impact of assimilating directional wave 
spectra in unlimited fetch conditions such as in the Southern Ocean. Two years of operational wave 
products from MFWAM model will be used in the analysis and a control model run without 
assimilation will be performed. Particular attention will be considered to examine the 
underestimation of spectral wave energy from SAR for high wave height generated in severe storms 
in austral winter. Figure 1 shows the mean difference of Significant Wave Height (SWH) from 
model runs with assimilation of wave spectra from SAR of Sentinel-1 and SWIM of CFOSAT. This 
clearly indicates the underestimation of SWH from the assimilation of SAR wave spectra in 
Southern Ocean dominated by shorter long waves still wind dependent because of unlimited fetch 
conditions. In these conditions SWIM can capture correctly such wind-wave of wavelengths 
ranging between 50 to 150 m of wavelength. The overestimation of SWH from the assimilation of 
SAR spectra as illustrated by in reddish color in figure 1, reveals the limitation of SWIM to capture 
very long waves exceeding 500 m of wavelength, typically in west coast of central America and 
tropical ocean regions. 
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Figure 1 : Mean difference of SWH from MFWAM model runs A and B for the period of May 2020. 
Run A is with the assimilation of SAR wave spectra, while run B is  with the assimilation of SWIM 
wave spectra.  

The validation of model outputs has been performed with independent wave data from altimetry and 
also integrated sea state parameters provided by available drifting buoys. Figure 2 shows here the 
SWH bias maps in comparison with altimeters focused on Southern Ocean. We can easily see that 
the assimilation of SWIM wave spectra better reduces the bias in comparison with the assimilation 
of SAR wave spectra.  

   (a)           (b) 
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Figure 2 : bias maps of SWH from MFWAM model runs in comparison with altimeters (Jason-3, 
Saral and S3) for the period from May-August 2020. (a), (b) and (c) stand for runs without 
assimilation, with assimilation of SAR spectra only, and with assimilation of SWIM spectra only, 
respectively.  

 

The results show the relevance of using jointly SAR and SWIM wave spectra to take benefits from 
the best capturing of different scales of waves. The SWIM wave spectra can also be used to 
improve or calibrate SAR wave spectra in storm conditions of Southern ocean. We also examined 
the impact of using upgraded level 2 retrieval algorithms for CFOSAT on the wave forecast. In 



 

 

other respects we investigated the impact of using multi-mission directional wave observations on 
coupling parameters with ocean circulation model. 

Further results will be presented in the final paper. 
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Abstract: The paper presents a novel concept of swarmSAR for improving azimuth resolution of 
decorrelating targets i.e., ocean surface in SAR imaging. SwarmSAR uses a swarm of small satellites 
to form a larger synthetic aperture, enabling higher resolution compared to traditional SAR. Results of 
the study show that swarmSAR offers a significant improvement in azimuth resolution compared to 
traditional SAR and provide insight into the limitations and future potentials. The paper suggests that 
this new technique has the potential to advance a range of applications, including environmental 
modelling, remote sensing, and oceanography. The study sheds light on the possibilities of using 
swarmSAR to tackle long-standing challenge in SAR imaging and promises to open up new avenues for 
research in this field. 

Introduction: 

Synthetic Aperture Radar (SAR) is a highly sophisticated remote sensing technology that plays a vital 
role in mapping the earth’s surface and obtaining detailed images. Its application spans across the fields, 
including geology, hydrology, meteorology, oceanography, and others [1]. SARs exploit the satellite 
movement to synthesize a long aperture antenna, observing the area of interest, and collecting radar 
echoes of the area while moving over it, to attain high azimuth resolution, which would otherwise need 
an antenna with an aperture of several kilometre. 

The ability of SAR to provide high-resolution images is a result of coherent integration of radar returns 
during the time of flight of a radar pulse along its path. However, the quality of these images can be 
impacted by various factors, including the aperture length. The amount of information collected by the 
radar is directly proportional to the aperture length, and hence, the aperture length is a critical factor 
affecting the resolution and accuracy of SAR images. The decorrelating nature of the target, because of 
the changes in ground scene during the flight duration can limit the aperture length. On land, the 
decorrelation is frequently not an issue because the ground is not changing during the period when SAR 
data is being gathered. Oceans, on the other hand, vary quickly over the duration of flight time, causing 
severe decorrelations, and limiting the permitted synthetic aperture length, and as a result affecting the 
azimuth resolution and SAR image quality [2]. 

To address these limitations, swarmSAR concept has emerged as a promising solution. The approach 
involves using multiple antennas in a close formation cooperating in a multiple-input multiple-output 
(MIMO) fashion. The idea behind SwarmSAR is to install several nodes, each of which has a basic 
imaging capacity that can be used independently. However, when they work together, they increase 
azimuth resolution and imaging capabilities [3].  

In this paper, we address the swarmSAR concept for decorrelating target, to enhance the azimuth 
resolution. First, we will present the signal model, which will be followed by the discussion of 
preliminary results, and finally conclusion. The detailed results will be presented in the final version of 
the paper. 

 



Signal Model: 

Let us consider a decorrelating point target, with point target amplitude 𝐴 and a variable decorrelation 
amplitude 𝐴𝑑, having a correlation time 𝜏𝑐 ≈ 3.29 𝜆

𝑈⁄ , where 𝑈 is the windspeed in this case we 
considered 𝑈 = 10 𝑚

𝑠⁄  [4]. The total amplitude of decorrelating point target 𝐴𝑡, which is product of 𝐴 
and 𝐴𝑑. The decorrelating point target is illuminated by 𝑁 phase centres. Let Φ𝑖(𝑡, 𝑅) represent the 
phase history of 𝑖𝑡ℎ satellite, where 𝑖 = {1, … , 𝑁}, 𝑡 is the time and 𝑅 is the range.  

                                                                                 Φ𝑖(𝑡, 𝑅) =  𝑒−2𝑘0𝑅𝑖                                                               (1) 

Where, 𝑘0 =  2𝜋
𝜆⁄ , and 𝑅𝑖 is the range history of 𝑖𝑡ℎ phase centre. The integration length is set 

according to the correlation time, i.e., 𝑙𝑖 ≈ 𝜏𝑐 . 𝑣𝑠𝑐, where 𝑣𝑠𝑐 is satellite velocity. The monostatic 
received signal based on the phase history of the 𝑖𝑡ℎ phase centre can be written as: 

                                                                                   s𝑟,𝑖(Φ) =  𝐴𝑡 . 𝑒𝑗Φ𝑖                                                               (2) 

Once the azimuth direction of the target is estimated, the signal from each satellite can be compressed 
in azimuth direction, this can be performed by using Fourier Transform (FT). 

                                                                                 S𝑟,𝑖(Φ) =  ℱ{ s𝑟,𝑖(Φ)}                                                         (3) 

The compressed signals from different phase centres can then be combined and passed through the 
matched filter to generate azimuth compressed SAR image. 

                                                                                   𝑆 =  ∑ 𝑆𝑟,𝑖(Φ)

𝑁

𝑖=1

                                                                 (4) 

Final SAR image can be expressed as; 

                                                                                    𝐼 =  ℱ−1(𝑆 ∗ 𝑀)                                                                (5) 

Here, 𝑀 is the matched filter and ℱ−1 represent inverse FT. 

Results: 

Before discussing the azimuth resolved images using monostatic and swarmSAR concept, let us discuss 
frequency response of signal from five satellites and simulation parameters, which are shown in figure 
1 and table 1 respectively. Note that, since aperture length is same as the satellite separation, the 
frequency responses for different satellites is perfectly aligned together causing no overlapping or gaps 
between different apertures, and hence by combining all the apertures together, we are able to create a 
full long aperture, and hence increasing azimuth resolution. However, in a close to reality scenario, 
when the apertures are not perfectly aligned with each other, this will cause the frequency response to 
overlap which due to insufficient cut-off can lead to azimuth ambiguities.  

 
Figure 1 – Frequency Response for five 
satellites with the separation of 4 km 

between them 
 

Table 1 – Simulation Parameters 

Parameter Value 

Satellites Height 693 km 
Satellites Speed 7000 m/s 

Operating Frequency 2.9 GHz (S-Band) 
PRF 4000 

Number of Satellites 5 

 



In figure 2a, the azimuth resolved image using a monostatic satellite is plotted for non-decorrelating 
(red curve) and decorrelating target (dashed blue curve). It is evident that azimuth resolution is 
downgraded when resolving decorrelating target using a standalone satellite. Figure 2(b-d) shows the 
comparison of azimuth resolved image for monostatic case (dashed red curve) and swarmSAR case 
(solid blue curve) for perfectly aligned apertures, overlapping apertures and, gapped apertures 
respectively. It is evident that perfectly aligned apertures enhance the azimuth resolution without adding 
signficant sidelobes, however, overlapping, and gapped apertures add significant sidelobes along with 
the enhance resolution, that is because of the frequency jumps which are caused when frequencies from 
two different apertures are mixed with each other. Note, the results presented in figure 2 are preliminary, 
which shows the potential of using this technique to enhance image quality of ocean surface using 
swarmSAR concept. The detailed results will be presented in the final version of paper, where we will 
present the method for mitigating the sidelobes and maintaining high resolution for generation high 
resolution images of ocean surfaces. 

Conclusion: 

In conclusion, the proposed concept of swarmSAR shows a great potential for improving azimuth 
resolution of decorrelating targets in SAR imaging, with results demonstrating its superiority over 
traditional SAR methods. The limitations and potentials of swarmSAR were analysed, providing a 
valuable information for further research. This study highlighted the significance of swarmSAR in 
advancing the capabilities of SAR systems. 
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Figure 2 – Azimuth Resolved Image for decorrelating target (a) Single Satellite, (b) Perfectly 
aligned swarmSAR configuration, (c) Overlapping swarmSAR configuration, (d) gapped aperture 

swarmSAR configuration 
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Abstract

This study assesses the potential of using jointly several wave observations sources in order to describe the properties
of the wave field induced by a tropical cyclone. To this aim, wave measurements inside and outside the TC vortex
are considered. A particular attention is paid on both the synergy and the consistency between the different data
sources. A specific filtering is proposed for each of them to deal with their limitations and to finally gather only valid
data into a single multi-mission product. This product is then used to discuss the performances of tropical cyclone
dedicated parametric wave models. In this cocktail of data, it is shown that both Sentinel-1 SAR acquisitions in
Wave and Wide Swath modes can play a complementary role.

1 Introduction

Tropical cyclones (TC) can generate long and energetic waves whose growth processes are complex. In the last
decades, sensors dedicated to waves measurements, embedded on aircrafts, satellites and buoys allowed to acquire
wind and waves data in such extreme meteorological events.

Airborne sensors sample the waves inside the TC vortex from the center up to the outer core with a high
resolution (kilometer) (1). However most of the flights are limited to USA waters and only the Wide Swath Radar
Altimeter provides directional wave spectra.

Several studies have used data from wave dedicated sensors embedded onboard satellites in the case of TCs.
Altimeter is certainly the most used but it only provides significant wave height and wind speed (8). SAR is also
promising to characterize the 2D wave spectrum but its limitations when observing severe sea state still hampers
for a seamless and routine usage of this sensor (3). However, Sentinel-1 wide swath mode and the 5 rotating beams
of SWIM onboard CFOSAT should help monitoring the wave field variability in the TC vortex.

Wave buoys, such as SOFAR ocean drifters and NDBC network, could allow to revisit the pioneer experiment
conducted in 1962, when wave-buoy measurements had been used to track storm (including TC) induced swell
systems across the pacific ocean (9).

This study proposes to apply this technique in the particular case of TC, combining several sources of data.
The method is explained in section 2 while the results are presented in section 3, before a discussion in section 4.

2 Method

In this study, we rely on wave measurements from Sentinel-1 SAR, CFOSAT SWIM, SOFAR Spotter and NDBC
wave-buoys to characterize TC induced wave fields. As wave measurements inside TCs are not numerous and of
poor quality, measurements outside TCs are considered to extend the so-called back propagation technique to the
case of TC waves - the measurements inside are left for another study. After a quality-filtering step depending
on the measurement source, the past trajectory of wave groups is computed assuming those propagate along great
circles without any impact of current and bathymetry on their wavelength and direction. Wave measurements whose
back propagation trajectory do not cross the TC, or crossed the TC but were generated by another meteorological
event are eliminated. Wave measurements are associated to their date and location of generation by the TC, and
gathered into a multi-mission product. For more details on the method and other applications, the reader can refer
to (9), (2) and (4).
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3 Results

In this section, information included in the multi-sensor TC waves product in the case of TC Larry, North Atlantic,
on 2021-09-09 at midnight, is analysed. On the map on figure 1 (right), all wave measurements generated by Larry
at the selected date are scattered at their location, and their propagation trajectories from the cyclone to acquisition
are plotted in color (color code represents days from 2021-09-09). In addition, the TC track is drawn in black. Each
measurement is also scattered on one of 4 wave roses depending on the sensor (left). On these polar plots, the
peak wavelength of measurements (distance to center of the rose) can be analysed as function of the direction of
propagation with respect to TC direction (given by the polar angle). The multi-sensor wave rose (middle) is a
superposition of the 4 individual wave roses on the top.

Figure 1: (Left) Wave roses for Tropical cyclone Larry on 2021-09-09 00:00:00, for each of the 4 different sensors.
(Middle) multi-sensor wave rose. (Right) Measurements map.

The 4 different sensors are in agreement as markers corresponding to different sensors overlap. Synergy between
sensors allows to get wave information in every direction of propagation. Moreover, this multi-sensor wave rose
provides observational evidence of the extended fetch effect that leads to longer waves propagating towards the
front of the TC than towards the rear, because of TC translation speed.

4 Discussion

Several parametric approaches to characterize the TC induced wave field have been proposed, and can be compared
to the multi-sensor product presented in section 3. In particular, (10) estimates the extended fetch encountered by
translating TC waves through a second order polynomial function of the wind velocity and TC translation speed.
The maximum significant wave height inside a tropical cyclone is estimated from this model and the designed
parametric function is corrected to match significant wave height altimeter measurements. In (6), a Lagrangian
parametric wave model is developed to provide fast estimates of the 2D sea state in the TC, at low computational
cost compared to spectral wave models, as an extention of the 1D formulation presented in (5). In (7) this ray
tracing model is run for a large amount of TC conditions to quantify the effect of TC translation on the energy and
wavelength enhancement or reduction, at any location in a TC.

Both models presented in (10) (based on an experimental fit) and (5) (based on wave growth theory) provide
an estimate of the spectral peak wavelength and significant wave height for the most energetic waves generated by
a TC (those that propagate in the TC direction to encounter an extended fetch). Unlike significant wave height,
wavelength is assumed to be conserved through propagation in deep water conditions. Then, peak wavelength
observations from the multi-sensor product performed outside the TC vortex, and peak wavelength estimations
from the 2 models should be equivalent. We compare model maximum peak wavelength estimation to the 90th

percentile of longest peak wavelengths coming from the TC front at each 3 hours step of Larry track. The results
are provided on figure 2.

During Larry’s maturity phases (between 2021-09-03 and 2021-09-09), Kudryavtsev’s maximum peak wavelength
estimations better matches observations than Young, which sligthly overstimates it. Interestingly, both models
match the trends of the observed wavelength. However, outside the mature phase of the TC, models can be
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significantly different from observations. Several hypotheses may explain these differences.
Regarding the multi-sensor product, it can be due to a too small amount of observations or wave observations

wrongly associated to a TC while they were generated by another meteorological event. Regarding models, they
assume TC first order parameters (maximum wind speed, maximum wind radius and translation speed) to be
constant in time. A rapid evolution of these TC vitals may provide inaccurate estimates of peak wavelength. The
fetch laws considered may also not be appropriate because they do not take into account drag coefficient variations
as function of the wind speed, in wind-wave growth processes. Our next objectives are to assess the validity of the
classic fetch laws inside tropical cyclones and to extend such model / observations comparisons in 2 dimensions,
taking into account the peak wavelength distribution as function of the direction of propagation and time.

Figure 2: Estimation of maximum peak wavelength from observations (blue), Young 2013 model (orange) and
Kudryavtsev 2015 model (green) as function of time in the case of TC Larry, 2021
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Swell propagation over the global ocean (so called firework) using Sentinel-1 wave mode is
now an operational CMEMS product and can be used to plan the arrival of swell events on
world shorelines. However, since Sentinel-1 is mostly operated in IW mode over the north
Atlantic, very limited monitoring of swells on North European Shorelines is possible,
especially since the loss of Sentinel1-B unit. Processing of IW mode into cross spectra
allows to circumvent and even surpass this lack of wave mode coverage in the North
Atlantic. Resulting potential for swell monitoring over the North Atlantic will be demonstrated.
Complementarity and comparison with CFOSAT SWIM wave spectra potential for swell
monitoring in the North Atlantic will also be demonstrated and discussed. Comparison of this
new capability for swell monitoring with the one offered by wave buoys network along the
European Atlantic coastline will be shown, highlighting the pro and cons of the two
complementary observing systems.
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Introduction 

Tropical cyclones (TC), or hurricanes cause severe damage during their land-falls, in China alone, the 
average 9.3 land-fall TCs cause more than ＄1 billion property loss while they take thousands of 
human lives each year. At the same time, remotely sensed data have the potential of providing vital 
information for improved forecasts. Among them, Synthetic Aperture Radar (SAR) images capture the 
most dynamic detail. European, Canadian and Chinese efforts to capture TCs have resulted in a 
considerable data base of a few hundred TC SAR acquisitions. Exploiting these data, we report on SAR 
image classification of TC features [1], TC wind direction retrieval using features in all polarizations 
[2,3], intercalibration of ECMWF, SAR and ASCAT scatterometer winds in a triple collocation [4].  

While SARs provide detail, wind scatterometers provide the capability to track TCs when exploiting 
the extending scatterometer virtual constellation. Scatterometers have been providing high-quality 
ocean surface wind products for more than 40 years [11], while they provide good extreme-wind 
retrieval on their native resolution of about 25 km [5]. Ku-band scatterometers have in principle 
similar capability, but suffer from heavy rain contamination and where quality control and rain 
correction are in progress [6,7]. Recently, with reference to the Step-Frequency-Multichannel-
Radiometer (SFMR) products [8], the quality of the C-band extreme wind speeds have been well 
proven and extension to Ku-band scatterometers is ongoing, tackling the problem of contamination 
by precipitation, as further illustrated below. Furthermore, improved extreme wind vector retrieval is 
being explored for C-band and later Ku-band scatterometers by resolution enhancement with 
reference to the extended SAR data base mentioned above using parametric high-resolution TC 
models [9]. Since sufficient SAR and scatterometer collocations for statistical enhancement techniques 
for varying hurricane categories are now available, the standard 2DVAR processing for scatterometer 
ambiguity removal [10] is employed for resolution enhancement of scatterometer winds in TCs, as 
illustrated in next secction.  

Work in Progress 

In-situ wind speeds are inconsistent for winds higher than 15 m/s, which poses a problem for wind 
speed calibration in TCs. The highest quality regular winds are from moored buoys and these are 
available up to about 25 m/s in sufficient statistical quantity for analysis [12]. Dropsondes from 
airplane campaigns by the NOAA hurricane hunters [13], which generally available above 20 m/s and 
are used to calibrate the Step-Frequency Microwave Radiometer (SFMR) winds. SFMR winds may 
subsequently be used for satellite wind calibration, due to their abundance. At 25 m/s there is an 
approximate 40% difference in wind strength between wind calibrations based on SFMR/dropsondes 
and moored buoys, affecting all satellite wind retrievals and physical modelling attempts of exchange 
processes at extreme winds.  A more detailed assessment of dropsonde characteristics is needed [12], 
hence probably also affecting all SAR wind products [4]. 

For reconciliated speeds between satellite instruments [4], we attempt spatial resolution 
enhancement and tracking of TCs or polar lows using the virtual constellation of microwave sensors, 
both active and passive. The ASCAT C-band scatterometer TC acquisitions are now being tested as 
depicted in Figure 1. 
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Figure 1. Illustration of ASCAT resolution enhancement: (a) TC TEDDY (acquired on September 16, 2020) 

imaged by ASCAT VV winds; (b) ECMWF forecast TC TEDDY winds resampled onto ASCAT; (c) 2DVAR wind 
analysis increments corresponding to (a) and (b). An apparent TC eyewall is generated around the TC center; 

(d) Super resolution ASCAT result; (e) TC TEDDY imaged by collocated SAR winds. 

In the 2DVAR analysis the typical spatial errors in the ECMWF forecasts need to be characterized in 
terms of longitudinal and transverse wind components. These spatial errors are particular to the 
hurricane under analysis and depend on the hurricane intensity and Radius of Maximum Wind (RMW), 
which can be estimated from the ASCAT inputs. The next step is to extend the resolution enhancement 
work to Ku-band scatterometers, thereby profiting from ongoing advancements in wind calibration, 
quality control and in particular rain screening and possibly rain correction for Ku-band scatterometers 
[6,7]. 

Conclusions 

The extensive SAR campaigns on acquisitions of tropical cyclones have resulted in a data base that 
allows the innovation of SAR wind products for TCs, providing unprecedented detail on the surface 
winds, supplementing detailed wind information, otherwise only available from hurricane campaigns.  

The many SAR TC acquisitions provide a good statistical basis for enhancing TC winds from the 
extending virtual wind scatterometer constellation, allowing improved tracking of TCs over their 
lifetime.  Some of these enhancement techniques for surface winds may also be employed for 
microwave radiometers winds in future work. 
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Abstract

This paper provides an extensive analysis of high resolution C-band ocean SAR scenes. Now routinely provided
by Sentinel-1 acquisitions at global scale in wide swath and wave modes, C-band detected ocean surface roughness
changes generally trace local air-sea marine-atmosphere layer conditions. Building on these large data sets, a
brute force approach is first applied to establish a robust relationship between the local radar texture and the
wind direction. Training a convolutional neural network model, performances can be assessed against co-located
WindSat radiometer estimates, with respect to the radar configuration (polarization, incidence angle, antenna-to-
wind direction), the wind speed and the nature of the air-sea interactions. In presence of atmospheric rolls, the
key textural information lies between 800 and 1600 m. Moreover, to interpret and then synthesize a realistic scene,
the texture spectral information is solely necessary. This does not apply for scenes where convective cells dominate
the texture. For such cases, the detected scale organisation matters. To interpret and synthesize a realistic scene,
both spectral and phase distributions must be considered. The present analysis thus provides new means to derive
improved estimates of very local air-sea marine-atmosphere layer conditions.

1 Introduction

It has long been recognized that high-resolution SAR ocean scenes quite systematically exhibit atmosphere signa-
tures. For scales larger than 300m, filtering out ocean swell contributions and slick impacts, most radar detected
roughness changes characterize the nature of the stability above the sea surface. Several studies thus already largely
investigated the relationship between these amplitude modulations with stability to possibly retrieve the Monin-
Obhukov length from SAR large scenes [4] or to characterize the surface layer stratification regime associated to
particular patterns [1]. Based on Sentinel-1 global Wave Mode data, these authors evidenced that signatures of
atmospheric rolls were prevalent for near-neutral conditions while signatures of convective cells were appearing for
unstable conditions.
Recently, methodologies based on convolutional neural networks (CNN) has been used to provide efficient multi-scale
decomposition of instantaneous SAR ocean image textures. In particular, [3] applied such an approach to classify
wave mode images into 10 different geophysical classes. An other study [5] also relies on such a decomposition to
evidence links with the local wind direction estimates. In that context, CNN methods largely extend Fourier-based
methodology, mostly useful to estimate the local direction of atmospheric rolls.
In the present study, the objective is to primarily follow and extend the approach presented in [5] to a broader
frame, including all sea conditions and Sentinel-1 modes. From the extended analysis, a more precise investigation
of the small-scale organisation, spectral and phase distributions, are then performed. The proposed methodology
is especially useful to better understand the links between SAR texture statistical properties, the surface wind
direction and local air-sea marine-atmosphere layer conditions.

2 Methodology

2.1 Dataset and neural network

A dataset was built for each of the following Sentinel-1 exclusive acquisition modes: Extra-Wide swath (EW),
Interferometric swath (IW), Wave (WV). These are three collections of collocated patches extracted from SAR
acquisitions and a reference wind direction. Each patch is defined by a size and a resolution. As a first choice,
we set the size to be around 18 km, corresponding to the size of an image acquired in WV. A pixel resolution of
400 m is then considered to filter most of the swell signature in the signal. The reference wind direction is given by
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Figure 1: (a) A streaks scene as fed to the CNNs. (b) Previous streaks scene with randomized phase. (c) Artificially
generated streaks.

satellite passive microwave WindSat estimates. A pair is considered to be robust when the WindSat wind direction
estimates is consistent (±10◦) to the one given by the ERA-5. WindSat observations may greatly deteriorate in
presence of heavy precipitations [2]. Only cases with a zero rain rate are kept. Note, heavy rain signatures on SAR
images can hide features related to the wind direction to possibly prevent any learning from the neural network.
For each of these datasets, several deep residual networks (ResNet) are trained. As each model is initialized
randomly and trained independently, this allows to predict an ensemble of different wind direction values and then
determine which direction is the most probable for a given patch as well as the associated uncertainty. The patches
resolution has been degraded to the same 400 m resolution for the three acquisition modes, the size chosen to fit
in the wavemode swath, to take benefit of the transfer learning method. The models are first trained on patches
extracted from WV acquisitions for which we have a much larger dataset. The WV model coefficients are then
transferred on IW and finally on EW for which less data is available.

2.2 Synthetic images

In this study we also attempt to create synthetic SAR scenes. Two methods have been tested : the modification
of an existing image and the creation from scratch. This is done in order to help discussing the results given by
the neural networks, further analyze the signature of phenomena of interest and to allow for data augmentation or
multi-resolution analysis. Here is presented how those artificial scenes are synthesized.
To begin with, starting from patches used in the validation datasets, we removed the part of the signal related to
the organization of the phases in the Fourier domain : we only kept the modulus of the spectrum and randomized
the phase component. This is done by replacing the phase component of the considered patch by the one of a
Gaussian white noise.
We also directly synthesized streaks scenes by modulating white noise with a correlation function defined such as the
noise level, width, length, regularity and orientation of the streaks. These parameters can then be can be tweaked
to test different configurations. An example is given on figure 1.
Finally, to examine the importance of the scales studied, we also applied low pass and high pass filters to the patches
of interest at different lengths.

3 Results & Discussion

The neural networks trained on each acquisition mode provide reliable estimations of the wind direction. In average,
the Mean Absolute Error (MAE) between the prediction and the reference value is inferior to 12◦ with a standard
deviation (STD) below 19◦ for IW and WV. For EW the MAE is lower than 15◦ with a STD below 24◦. The bias
is lower than 2◦ across all acquisition modes. The best wind estimations are obtained for wind speeds between 10
and 20 m/s. In this specific range, the MAE drops below 7◦ for IW, 9◦ for WV and 11◦ for EW. Moreover, the
predictions do not seem to be dependent of the incidence angle in the case of WV or IW where plenty of data is
available across the whole incidence range. In EW, the lower amount of data available in the training dataset at
incidence inferior to 27◦ does seem to have an impact on the performances. The error linearly decreases from 20◦

to 15◦ between incidence angles of 20◦ and 27◦.
In the contrary, the quality of inference is significantly impacted by the nature of the atmospheric phenomena visible
in a given patch. The performances of the model with respect to 10 different geophysical classes as defined in [3]
for WV has been assessed. The best results were obtained on streaks events where the mean difference between
predictions and reference is lower to 9◦ for both WV1 and WV2. On micro convective cells or rain cells situations,
this difference increases by more than 4◦. An illustration of those results is given on figure 2.
Even tough the model was trained only on the VV polarization channel, it is still possible to infer on the VH
polarization channel. In fact, in the case of extreme waves events, the swell signature can hinder the wind direction
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Figure 2: Example of the results obtained on different type of scenes.

(a) (b)

Figure 3: Sentinel-1 acquisitions of the tropical cyclone Surigae with windfield estimation from the neural networks.
(a) Polarization VV. (b) Polarization VH

retrieval because its unusually large wavelength can be mixed up with rolls by the neural models. This is expected
to impact more importantly the VV than the VH polarization channel as the wave modulation is higher in VV
than in VH due to the tilting effect. Considering the VH channel is thus interesting in these cases. The figure
3 illustrates this aspect on a Sentinel-1 acquisition over the Surigae cyclone where the inference made on the VH
channel seems more realistic (wind swirling around the eye on the right hand side of TC tracks where swell are
expected to be the longest) than the one from the VV channel.
The models were also used to predict the wind direction on synthetic patches. In the case of wind streaks, when
the phases of a given patch are randomized in the Fourier domain, the models are still able to perform a reliable
estimation. However, this does not apply in the case of micro convective cells. This means that the organisation of
the cells-induced structure is essential to retrieve the wind direction.
Progressively filtering different levels of scales using low pass and high pass filters allowed to estimate what are the
most important ones for the wind direction retrieval. It appears that it is between 800 m and 1600 m that lies the
majority of features directly related to wind direction estimation.
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Abstract

A deep learning methodology based on a residual neural network (ResNet), developed to retrieve wind
directions from SAR at 500 m grid without external information, opens the possibility to investigate the
spatial characteristics at mesoscale γ in small semi-enclosed areas, like lagoons and Arctic fjords. Avoiding
to illustrate technical details concerning the ResNet methodology, this contribution is focused on showing a
ResNet wind field over Svalbard fjords. The richness of details provided makes the comparison with other
data sets (models/in-situ) somehow insufficient, simply because they do not have a resolution similar to that
of SAR wind. We tackle this issue by adding other approaches to the standard co-located comparisons, like
the analysis of the spatial gradient of wind. In the example reported in this work and in literature it turns out
that the structure of the ResNet wind fields is compatible with some of the meso-scale γ features of the wind.

Key words: Deep residual network, Arctic Fjords, Synthetic Aperture Radar (SAR), Wind field.

1. INTRODUCTION

Retrieval of wind field from SAR needs, among others, the knowledge of the wind direction. The main techniques at
present available are reviewed in Zecchetto and Zanchetta (2022), to which the interested reader is addressed. Summa-
rizing by considering only the methods evaluating wind direction directly from the SAR images, we pointed out that the
intrinsic limitations of the existing methodologies (requiring the presence of wind-induced streaks or weakly divergent
fields or working only in deep water open sea) claim for a robust methodology able to derive high resolution (below 1 km)
wind fields both in open sea and coastal areas. Thus, a deep learning methodology based on the residual convolutional
neural network, hereafter referred as ResNet, has been developed using Sentinel-1 SAR images (Zanchetta and Zecchetto,
2021) and tested over different meteorological situations and areas (Zecchetto and Zanchetta, 2022). From a statistical
point of view, the ResNet wind directions agree very well with those from ECMWF and in-situ data; from the applicative
point of view, the 500 m spatial grid of ResNet SAR winds attains an exhaustive coverage of small enclosed sea areas, like
the Venice Lagoon, allowing the investigation of the inner structure of the wind fields up to the meso-scale γ (Orlanski,
1975), i.e. below 10 km. In our knowledge, there is not any other methodology to derive the wind from SAR with such
richness of detail and without any external information.

2. THE DATA

The C-band Sentinel-1 images IW GRDH L1 at VV polarization and pixel size of 10 meters (European Space Agency,
2013), downloaded from the ESA Sentinels Scientific Data Hub1, have been used in this work. In-situ and model data have
been used here as reference: they are the in-situ data in the western coast of Svalbard, downloaded from the Norwegian
Meteorological Institute2, and the AROME Arctic 2.5 km model wind data are the forecasts at 1 hour sampling by the
Norwegian Meteorological Institute.

1https://scihub.copernicus.eu/
2frost.met.no/api.html
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3. IMAGE PRE-PROCESSING AND WIND DIRECTION COMPUTATION BY RESNET

The original SAR images underwent to a pre-processing, carried out using SNAP3 free software, i.e. precise orbit deter-
mination, thermal noise reduction, calibration, de-speckle filtering, terrain correction, land-sea mask and down-sampling
to 50 m. ResNet works from these pre-processed images on partitioned, partly overlapping, sub-images of 64 × 64 pixels
(3.2 km × 3.2 km), centered on a regular grid of 500 m, previously filtered with a Gauss filter to remove the ocean wave
signatures. Therefore, the vectors closest to the land are at least 1.5 km offshore. ResNet has been trained with 806139
samples derived from 25 Sentinel-1 images, in a similar way as in Zanchetta and Zecchetto (2021).

4. RESULTS

Figure 1 reports a Sentinel-1 image of the southwestern part of Svalbard (left panel), along with the ResNet wind field
(right panel). The image was taken in wintertime, and sea-ice is present both as pancake and first year ice. As the
wind cannot be derived over ice, we developed a methodology (Shamsaddini et al., 2023), based on the Gray Level Co-
occurrence Matrix, to obtain sea-ice masks, contoured by white lines in the left panel. The image shows a tongue of high
backscatter in the Isfjorden area, (between 9.5◦ and 17.5◦ E and 77.8◦ and 78.4◦ N), well visible in the ResNet wind
(left panel), showing an impressive number of details: the down-fjord wind in Isfjorden, the katabatic flows west of Prins
Karls long island (≈ 10◦ E, 78◦ N). The bias between AROME model and SAR winds shows a good agreement (0.4 m/s
and 3◦), but cannot show whether the several short scale variations provided by SAR are artifact of the method used or
indeed represent meso-scale γ characteristics of the wind. For this reason, we investigate the wind speed and direction
variability of the down-fjord wind in the Isfjorden shown in the right panel of Figure 1. Figure 2 reports the wind speed

Figure 1. Example of SAR wind field over the Svalbard. Left panel: Sentinel-1A of 2 February 2020, 06:15 UTC. The
white contours identify the presence of ice. Right panel: ResNet wind field in the sea areas (sea-ice areas in white). Black
arrows are in-situ winds (not in scale). The black dashed line is the transect along which the wind variability is studied.

and direction variability along the transect from ResNet, AROME and ECMWF model data. Apart from the obvious
difference in details between ResNet and model winds because of the different grid size, the models variations differ in
both wind speed and direction, with some space lag with variations of the SAR winds. This shows the issues arising
when comparing SAR winds with models in small areas. The spatial variability of the wind speed and direction are of
0.8 (m/s)/km and 8◦/km, with a dominant wavelength of 7.1 km, numbers close to those obtained from the analysis of
high frequency in-situ and SAR winds in the northern Adriatic sea (Zecchetto and Zanchetta, 2022) (not possible with the
1 h in-situ data available here). This indirectly confirms the reliability of the estimates provided by ResNet.

3https://step.esa.int/main/toolboxes/snap/
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5. FINAL CONSIDERATIONS

The ResNet SAR wind fields describe, in unprecedented detail, the spatial characteristics of the wind even in very de-
manding areas as the Arctic fjords. The richness of details provided makes somehow insufficient the comparison with
other data set, simply because the present available data set (models/in-situ) do not have resolutions comparable to that
provided by ResNet. Thus, we have to envisage other approaches, different from the standard co-located data comparison,
approaches testing the compatibility rather than bias of RMS difference. One of these is the analysis of the wind spatial
gradient that has shown, in the example reported here as well as in Zecchetto and Zanchetta (2022), that the spatial struc-
ture of the ResNet wind fields is compatible with some features of the wind in the meso-scale γ range. An other approach
could be the comparison with other methods deriving the wind from SAR without external information, such as the 2D
Continuous Wavelet Transform (Zecchetto, 2018).

Figure 2. Variability of wind speed (left panel) and direction (right panel) along the transect depicted in the right panel
of Fig. 1.
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Despite Australia having an abundance of offshore industries (e.g., oil and gas, fisheries), and an emerging offshore wind 
energy industry, there are few sustained in-situ nearshore ocean surface wind measurements around Australia. The collected 
data are commercial-in-confidence or confounded by land effects on reefs, jetties, and coastal infrastructure. To fill this 
measurement gap, Sentinel-1 A/B Synthetic Aperture Radar (SAR) acquisitions over Australian nearshore areas have been 
exploited to build a regional, high resolution (1km) SAR ocean surface winds database [1; under review at the time of 
writing]. Such a high-resolution coastal winds database also compliments global Scatterometer wind measurements which 
contain limited data closer to the shore. Two similar SAR nearshore winds databases that exist in other geographical regions, 
include NOAA’s operational SAR derived wind products [2] primarily focused on North America and DTU (Technical 
University of Denmark) Wind Energy’s SAR winds database [3] with a European focus. 

 
SAR winds are derived using input data from Sentinel-1 level-2 ocean winds (OWI) product [4] sourced from the 

Copernicus Australasia regional data hub (https://www.copernicus.gov.au/). For consistency, the whole Sentinel-1 archive is 
processed using the same wind inversion scheme and geophysical model function (GMF). The OWI product contains all the 
input variables necessary to derive SAR winds at 1 km resolution including normalised radar cross section (NRCS), local 
incidence angle, satellite heading, and collocated model wind speed and direction from ECMWF. The algorithm applied for 
wind inversion is based on the variational Bayesian inversion approach as proposed in [5], and the Sentinel-1 Ocean wind 
algorithm definition document [6] with CMOD5.N as the underlying GMF [7]. The winds are also quality flagged in a 
systematic manner. Calibration of SAR wind speed is performed opportunistically against calibrated Metop-A and B 
Scatterometer winds database [8] with a relatively relaxed matchup criteria (within 50km and 3 hours) to increase the number 
of data points. Calibrated SAR wind speeds are then validated against an independent Altimeter wind speed database [9]. 

 
The database has been recently made available through the Australian Ocean Data Network (AODN) portal 

(https://portal.aodn.org.au), which provides access through a graphical user interface that facilitates search and filtering by 
date, spatial extent, percentage of map containing wind data, satellite platform, and swath as well as quick display of wind 
maps of interest. At the time of writing, the portal hosts historical SAR winds data with approx. 6 monthly updates, but the 
intention is to also include a near real time feed. 

 
The online database at this stage comprises wind maps arranged in satellite swath-style grids i.e., aligned along SAR 

azimuth and range directions (commonly referred to as a curvilinear grid). But regularly gridded and interpolated (rectilinear 
grid) experimental data products have also been developed with the advantage of easier use with regularly gridded numerical 
model or other satellite data, easier stitching/scaling of data in space and time for regular monitoring and/or visualisation. A 
challenge here is to find the grid resolution that retains small scale variability captured in SAR wind maps without being 
prohibitively large. One potential approach is to have separate datasets with different levels of detail and spatial extents. 
 

Such a coastal winds archive has numerous uses for various applications. It is envisaged that the data will be of use to 
Australian marine science and industry sectors, such as for offshore industry needs, better understanding of coastal wind 
climatology alongside other regional/global model hindcast and reanalyses products, and verification of model wind fields. 

https://portal.aodn.org.au/
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The current energy supply in the Mediterranean Sea is highly linked with fossil fuels. Offshore wind 

farm development is the next step towards the green energy transition. Robust planning and 

deployment of wind farms though, require the quantification of wind potential in the offshore areas 

with high quality wind measurements.  

Precise wind speed evaluations are notably important in the Mediterranean basin, which is mostly 

surrounded by mountain ranges which strongly affect the wind circulation and create a local wind 

climate. Under specific weather conditions, orography may funnel wind flows that can reach gale 

strengths.  Therefore, modelling of offshore wind conditions in such areas is challenging. On the other 

hand, in-situ measurements are sparse and their quality in terms of continuity and accuracy is highly 

variable. Another caveat with the above-mentioned model datasets, is that model outputs are 

constrained in finite grid boxes and in-situ data refer only to point locations. Wind fields from Sentinel-

1 satellite Synthetic Aperture Radar (SAR) can resolve wind variability in detail since they have an 

adequate spatial coverage of 500 m. SAR may be a useful alternative for capturing the local wind 

effects and variations in complex terrain as well as the calculation of the wind resource potential in 

the near shore and offshore areas of the Mediterranean Sea.  

This study focuses on the North-Western Mediterranean, in the Gulf of Lion, which currently is the 

most progressed spot for the placement of floating wind turbines in the Mediterranean. This region is 

frequently affected by two strong local winds, the Mistral and Tramontane. The Mistral is a North wind 

that develops between the Alps and the Massif Central along the Rhône valley, and the Tramontane 

is a North-Western wind that flows through the Aude valley between the Massif Central and the 

Pyrénées (Fig. 1). 

SAR wind speed retrievals using CMOD5.N are driven with three different numerical model wind 

directions: GFS and ERA-5 with a 27 km spatial resolution and the WRF model used for the production 

of the New European Wind Atlas (NEWA) with a 3 km spatial resolution for the year of 2018.  Their 

respective temporal resolutions are 3, 1 and ½ hour.  

A SAR scene from 21st of January 2018 is presented on Fig. 2., for the three datasets (SAR-GFS, SAR-

ERA5 and SAR-NEWA).  Fig. 2 indicates the wind speed at 10 m and the areas of the potential wind 

farms (black circles). In this figure, the SAR scene clearly displays the presence of the Tramontane 

wind, which is channeled through the two mountain ranges. Apparent lee waves come as a result of 

the Tramontane passing through Massif Central Mountain range. 

The scatter plots of wind speed and direction between the three datasets for the potential wind farm 

site 1 are displayed on Fig. 3 and Fig. 4, respectively. SAR fields indicate that SAR data driven with 

NEWA wind directions indicate higher wind speeds of 1-2 m/s than the data driven with GFS and ERA5 

wind directions. The respective wind directions on Fig. 4 display 2 to 4 degrees difference from the 

other two datasets.  

 



This objective of this study is twofold. First, to highlight that the SAR satellite winds can yield detailed 

spatial information about the wind potential at future wind farm sites, especially in coastal places near 

complex topography. Second, to reveal the importance of a correct coupling between SAR and 

numerical inputs to CMOD5.N in order to demonstrate the true wind conditions in the area of interest.  

 

 

Fig. 1. Topography of the Gulf of Lion (adapted from (Omrani et al., 2017)) 

 

 

Fig. 2. Sentinel-1 SAR wind fields from CMOD5.N processed with GFS (left), ERA5 (middle) and NEWA 

(right) wind directions. The black circles indicate the potential areas for wind farm placement. 

 

 

 



  

Fig. 3. Wind speed scatter plots between the three SAR datasets with input of wind directions from 

GFS (left), ERA5 (middle) and NEWA (right) for the potential wind farm site 1 (dotted circle on Fig.2). 

The mean value of each dataset is displayed along the respective axis.  

 

 

Fig. 4. Wind direction scatter plots between the three datasets: GFS (left), ERA5 (middle) and NEWA 

(right) for the potential wind farm site 1 (dotted circle on Fig.2). The mean value of each dataset is 

displayed along the respective axis.  
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Abstract— The usage of synthetic aperture radar (SAR) co-polarized data to retrieve information about the wind speed over the 
ocean surface is an established operational service. We investigate how to include the cross-polarized and the Doppler Centroid 
Anomaly (DCA) data in an operational setting. Including more data sources can alleviate the dependency on weather model 
data, but also requires rules for how to balance the influence of the different data sources.  
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I. INTRODUCTION  
SAR data can be used to measure the wind over the ocean surface for most sea states, since the backscatter is dominated 

by wind-induced ripples. The measured co-polarized backscatter is compared to semi-empirical forward models describing 
the relation between the wind speed vector and the SAR signal. Compared to most numerical weather models the resolution 
achieved from SAR data (1-by-1 km) is quite good.  However, the problem is underdetermined, both the speed and direction 
of the wind will affect the co-polarized backscatter signal, and we only have one measurement. Traditionally this has been 
solved by combining numerical weather model data to the inverse problem. We typically use the weather model wind 
direction and determine the corresponding wind speed from the backscatter signal. Ideally, we would also like to update the 
wind direction based on the measured signal. In addition, in an operational context we have now introduced a dependency on 
weather model data meaning that if the model data provider is down the wind production will also stop.  

With the launch of Sentinel-1 the availability of dual-polarization data has increased, resulting in a lot of interest in the 
use of cross-polarization data in wind retrieval. Especially over hurricanes and other high-wind events, since cross-polarized 
data does not saturate at high winds like co-polarized data (e.g. [1], [2]). Cross-polarized data taken over the ocean is not 
sensitive to the wind direction, only to the wind speed [3]. Using the cross-polarized data in the wind retrieval can decrease 
the dependency on weather model data and allow us to infer about the direction as well as the speed. For Sentinel-1 data, we 
can also utilize the doppler centroid anomaly (DCA) data which is also dominated by ocean wind and current effects [4]. In 
theory this should allow us to discard the dependency on model wind data, but the DCA product from Sentinel-1 is still in a 
prototype stage. 

 Standard wind retrieval from SAR has been in operational use for years at KSAT, especially within the oil detection 
service to obtain the detection capability map. In this work we investigate how to include cross-polarization backscatter and 
DCA in an operational setting, meaning that all SAR scenes are processed by the same system regardless of if it is a low or 
high wind situation. This is done in the framework of the CryoniteOcean software, developed by NORCE and running 
operationally at KSAT. We analyse all the Sentinel-1A data for 2022 over a point of the coast of Norway, as well as 34 
Radarsat-2 scenes taken in 2010 and 2016. Wind retrieval based on four different combinations of data sources is performed 
and compared to measurement station Norne.  

II. DATASETS 

A. SAR datasets 
The Sentinel-1 data set comprises 151 Sentinel-1A IW DV scenes of the coast of Norway from all of 2022. Of these, 80 

contain land which is currently a requirement for using the DCA data. Both the level 1 GRD and level 2 OCN data were used. 
The Radarsat-2 dataset is 34 SCNA DV scenes covering the same area, 8 from 2010 and 26 from 2016. 

 Areas of low backscatter in SAR scenes can be severely affected by additive noise. For most ocean surfaces the cross-pol 
backscatter signal will be low, and the additive noise quite visible. Also, the multi-swath acquisition mode of S1 and RS2 
SCN will cause an intensity difference in each swath and the swath seams will be visible in the detected image. We apply the 
standard thermal denoising procedure [5], which has well-known weaknesses. This will be visible in the end wind speed and 
direction results, as we can see the sub-swaths in the results. Radarsat-2 data is similarly corrected using the reference noise 
levels annotated in the products. 

 The S1 level 2 OCN contains denoised backscatter so no further denoising is needed. However, the DCA is not calibrated 
in the standard product. We adjust the DCA at ocean pixels by subtracting the mean DCA over all land pixels.   

B. In situ dataset 
The in-situ wind speed and direction measurements are taken from https://seklima.met.no/, from the Norne platform 

located at 66.0256º N, 8.085º E. The wind is typically measured ~100moh but is adjusted to 10m height, and the time 

https://seklima.met.no/


 

resolution is 10 min. The median wind speed for every 10 minutes is used, indicating that wind gusts are ignored.  
Figure 1 below shows the wind direction and speed from the platform, where the majority of the wind comes from south-
west, west, and north-west. The average wind is 7.6 m/s, the middle wind is 7.2, and the maximum wind is 27 m/s throughout 
the year 2022. 

 

    
Fig. 1 In-situ wind direction and speed from NORNE platform during 2022. 

 

III. INVERSION METHOD 
SAR wind retrieval is typically done by defining a cost function which is a function of the true wind vector (speed and 

direction) and depends on the measured SAR backscatter and a prior wind vector as an input. The measured SAR backscatter 
is related to the wind vector using a forward model. Working from [6], the full cost function is defined as 

 
Here, we use the CMOD5.n [7] model for co-polarization backscatter 𝜎𝑚𝑜𝑑

𝑉𝑉 , the MS1A [8] model for cross-polarization 
backscatter 𝜎𝑚𝑜𝑑

𝑉𝐻 , and the CDOP [4] model for the DCA 𝑑𝑐𝑎𝑚𝑜𝑑
𝑉 . The true wind vector is described by its speed 𝑤 and its 

direction 𝜙, and the prior wind direction 𝜙𝑝𝑟𝑖𝑜𝑟 is the ERA5 ECMWF [9] model wind direction. The model wind speed is not 
used directly in the cost function; however, the model wind speed and direction are both used as starting points in the 
inversion procedure. The selection of the weights in the denominators will assign the relative importance of matching this 
particular term in the cost function. For instance, with a high 𝑠𝜙 it will be less important in the inversion procedure to match 
𝜙 with 𝜙𝑝𝑟𝑖𝑜𝑟. In this case we select 𝑠𝑉𝑉 = 𝑠𝑉𝐻 = 0.1, 𝑠𝑑𝑐𝑎 = 0.4 and 𝑠𝜙 = 5.  

 Over ocean the cross-polarization backscatter will hit the noise floor for low wind cases, and the co-polarization 
backscatter will saturate for high wind cases. Ideally, we should use the cross-pol signal for high wind and the co-pol signal 
for low wind. This is regulated through the  𝑊(𝜎𝑜𝑏𝑠

𝑉𝐻 ) term in (1). We select a wind speed interval [𝑤𝑙,  𝑤ℎ], where for all 
wind speeds below the interval we only use co-pol and for wind speed above the interval we only use cross-pol. We use an 
interval of [8,30] m/s and define the weight function as   

 
     

Wind inversion is performed with four combinations of input data and thus four different cost functions: 

- based on co-polarization data alone (copol), using terms 1 and 2 in (1). 

- based on a combination of co-polarization and cross-polarization (dual), using terms 1, 2, and 3 in (1). 

- based on the DCA and co- and cross-polarization data (full), using all terms in (1). 

- based on co-polarization data and the DCA (codop), using terms 1, 2 and 4 in (1). 

The copol and dual scheme is applied to both S1 and RS2 datasets, and the results are processed from the standard GRD 
products using the CryoniteOcean software running at KSAT. The full and codop is limited to the S1 dataset as the DCA is 
not available for the Radarsat-2 dataset, and we perform the inversion starting from the S1 level 2 OCN products.  

IV. PRELIMINARY RESULTS 
Figure 2 shows the results for the four different inversion methods for a S1 scene on 20220508. Here we see that the 

copol, dual and full results for wind speed are quite similar, while the codop has some higher winds at near range. Either way 
the SAR wind speed is much more detailed than the model wind speed. The DCA is estimated at a resolution of 3x3 km, 
while the SAR wind has a resolution of 1x1 km, we can see this difference in resolution in the level of details comparing 



 

codop/full with copol/dual. For the direction, as expected the copol direction is very close to the model direction. The dual 
direction has more variations. We can also see the 3 swath seams in the dual direction, this is due to the inferior noise 
correction applied on the cross-pol backscatter. 

 

 

Fig. 2 Results for S1A IW GRDH 1SDV 20220528T055454. Upper row is wind speed and lower is wind direction, using the four different 
inversions and the ECMWF model data. 

Figure 3 shows screenshots from an interactive dashboard with statistics of the in-situ wind speed and direction from NORNE 
versus the four methods (copol, dual, codop, and full). The boxes below the scatter plots show the standard deviations of SAR 
wind and SAR wind directions versus in-situ. Codop and full-pol deviates the most from the in-situ wind data compared to 
the other methods, while the copol and dual-pol show similar performance. Preliminary results indicate that the use of cross-
pol is useful for increasing the information about the wind direction. Visually the retrieved wind speed seems deteriorated 
because of the swath seams, showing the need for more robust noise corrections. The use of DCA deteriorates the results, the 
weighting needs to be investigated further.  

 

       

Fig. 3 Upper: Time series of SAR wind and direction from in-situ, copol, codop, and dual-pol. Lower: Scatterplots of SAR winds versus in-
situ wind from copol, dual, co-dop, and full, respectively. 

REFERENCES 
 
[1] Horstmann, J.; Schiller, H.; Schulz-Stellenfleth, J.; Lehner, S. “Global wind speed retrieval from SAR”. IEEE Trans. Geosci. Remote. Sens. 2003, 41, 

2277–2286. 
[2] Vachon, P.W.; Wolfe, J. “C-band cross-polarization wind speed retrieval”. IEEE Geosci. Remote. Sens. Lett. 2010, 8, 456–459. 
[3] Zhang, B.; Perrie, W. “Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes”. Bull. Am.Meteorol. Soc. 2012, 

93, 531–541. 
[4] Mouche, A.A.; Collard, F.; Chapron, B.; Dagestad, K.F.; Guitton, G.; Johannessen, J.A.; Kerbaol, V.; Hansen, M.W. “On the use of Doppler shift for sea 

surface wind retrieval from SAR”. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2901–2909. 
[5] S-1 Mission Performance Centre, “Thermal Denoising of Products Generated by the S-1 IPF”, https://sentinel.esa.int/documents/247904/2142675/Thermal-
Denoising-of-Products-Generated-by-Sentinel-1-IPF 
[6] Tollinger M.; Graversen R.; Johnsen H. "High-Resolution Polar Low Winds Obtained from Unsupervised SAR Wind Retrieval", Remote Sens. 2021, 
13(22), 4655; https://doi.org/10.3390/rs13224655 
[7] Hersbach H., “CMOD5.N: A C-band geophysical model function for equivalent neutral wind,” ECMWF, Reading, U.K., 2008. Tech. Memo. 554. 
[8] Mouche, A.A.; Chapron, B.; Zhang, B.; Husson, R. “Combined co-and cross-polarized SAR measurements under extreme wind conditions”. IEEE Trans. 
Geosci. Remote Sens. 2017, 55, 6746–6755. 
[9] Hersbach, H. et al., “The ERA5 Global Reanalysis” May 2020
 
 
 

https://sentinel.esa.int/documents/247904/2142675/Thermal-Denoising-of-Products-Generated-by-Sentinel-1-IPF
https://sentinel.esa.int/documents/247904/2142675/Thermal-Denoising-of-Products-Generated-by-Sentinel-1-IPF


 

Doppler Shift Retrievals 

 
 

 

 

 

 



Doppler Shift Retrievals 
 
 
Kleinherenbrink, Marcel; Yuan, Yan; Theodosiou, Andreas; Gaultier, Lucile; 
Collard, Fabrice; Chapron, Bertrand; Lopez-Dekker, Paco 
Multiscale Effects on Harmony's High-resolution Ocean Observations 
 
Elyouncha, Anis; Eriksson, Leif; Gommenginger, Christine 
Observations of the Agulhas Current by Along-track Interferometric Synthetic Aperture 
Radar 
 
Romeiser, Roland 
Review of TerraSAR-X Based Current Retrieval Activities at the University of Miami 
 
Martin, Adrien; Macedo, Karlus; McCann, David; Portabella, Marcos; Marié, Louis; 
Marquez, José; Carrasco, Ruben; Duarte, Rui; Meta, Adriano; Gommenginger, Christine; 
Martin-Iglesias, Petronilo; Casal, Tania 
OSCAR: A New Airborne Instrument To Image Ocean-Atmosphere Dynamics At The Sub-
Mesoscale 
 
Moiseev, Artem; Collard, Fabrice; Johannessen, Johnny A 
Ocean Surface Currents from Sentinel-1 Doppler observations 
 
Guitton, Gilles; Collard, Fabrice; Johnsen, Harald; Engen, Geir; Recchia, Andrea; Cotrufo, 
Alessandro; Bras, Sergio; Miranda, Nuno; Pinheiro, Muriel 
Towards Calibrated Sentinel-1 OCN RVL Products 
 
Domps, Baptiste; Guérin, Charles-Antoine 
Evaluation of Surface Currents Derived from Sentinel-1 SAR Doppler Shift in the 
Northwestern Mediterranean Sea Using Coastal HF Radars 



Multiscale effects on Harmony’s High-resolution Ocean Observations

M. Kleinherenbrink, Y. Yuan, A. Theodosiou, L. Gaultier,
F. Collard, B. Chapron, P. Lopez-Dekker

January 31, 2023

1 Introduction

The two satellites of the Harmony mission will fly in con-
stellation with a Sentinel-1 Synthetic Aperture Radar (SAR)
satellite. Harmony’s passive radar instruments will receive sig-
nals transmitted by Sentinel-1 after reflection from the sur-
face. The multistatic system uses three lines-of-sight to ob-
serve high-resolution normalized radar cross section (NRCS)
and Doppler. With Harmony’s high-resolution observations we
aim to observed high-resolution O(1 km2) wind-stress anoma-
lies and ocean-surface currents.

The interpretation of high-resolution signals is not trivial as
they are affected by non-locally generated waves. Long waves
O(>5 m) have relaxation scales much larger than the intended
resolution of the Harmony level-2 products. The long waves af-
fect the NRCS and the Doppler in different ways [6, 7, 5, 3]. Es-
timation of wind stress and ocean-surface current should there-
fore not be done on a pixel basis, but it requires multi-scale
dynamical approaches.

In this paper, we show the result of forward modelled po-
larimetric NRCS and Doppler for Harmony and Sentinel-1. In-
put for our models are wind (stress) and ocean current grids
from models. We use an equilibrium short-wave spectrum
with a parametric long-wave spectrum to estimate the NRCS
and Doppler. Alternatively, we use the Simulating WAves
Nearshore (SWAN) model[1] for the long waves to capture non-
local effects of wind and currents. By comparing both, we
demonstrate why a pixel-based inversion is not suitable for high-
resolution products.

2 Methodology

The modelling of NRCS and Doppler is based on a bistatic im-
plementation of the Radar Imaging Model (RIM)[6, 7] and the
Doppler RIM (DopRIM)[5]. The forward models require as in-
put a wave spectrum at each grid cell that is computed from
the wind and ocean currents in the scene.

2.1 Wave spectra

The wave spectrum is split at ten times the peak wavenumber,
kl = 10kp, into a short- and a long-wave spectrum. The two-
dimensional curvature spectrum depends on the wavenumber
vector k⃗ and is described by

B(k⃗) = ϕ(k, kl)Blw(k⃗) + (1− ϕ(k, kl))Bsw(k⃗), (1)

where ϕ(k⃗, kl) is a roll-off function. The parametric long-wave
spectrum used in this study is from Elfouhaily et al.[2], while

the short-wave spectrum is based on an equilibrium approach
described by Kudryavtsev et al.[6] with the implementation as
in Kudryavtsev et al. (2014)[8].

To take the relaxation and direction changes of long waves
into account, we replace in a second run the Elfouhaily long-
wave spectra by those from a SWAN model run. We addition-
ally apply a linear model to account for the effects of currents
on the short-wave spectrum[9]. From here on we refer to both
models simply as Elfouhaily and SWAN.

2.2 NRCS and Doppler

The implementation of the RIM and DopRIM models from the
monostatic case follow Kudryavtsev et al.[6] and Hansen et al.[3]
The RIM accounts for three scattering mechanisms: specular
scattering, Bragg scattering and scattering from wave breaking.
This results in a monostatic NRCS as given by

σm
0 = σsp(1− q) + σBr(1− q) + σwbq, (2)

where q the fraction of the surface covered by breakers. The
derivation of the bistatic NRCS is rather elaborate and is dis-
cussed in an upcoming publication (Kleinherenbrink et al. 2023,
in preparation). A principal polarization basis as defined in [4]
is used, which results in different weighting of the scattering
mechanisms, which is summarized as

σb
0 = wb

spσsp(1− q) + wb
BrσBr(1− q) + wwbσ

b
wbq, (3)

where the weights depend on the bistatic geometry. We estab-
lish one description for the monostatic and bistatic Doppler

fm,b
D = σ′

spfsp + σHH′

Br fHH
Br + σV V ′

Br fV V
Br + σ′

wbfwb, (4)

which depends on the scattering ratios σ′
xx where the super-

script (b,m) is omitted for clarity. Due to the geometry, the
bistatic Doppler can be described as a function of both HH and
V V components (see Kleinherenbrink et al. (2023), in prepara-
tion) even though Sentinel-1’s transmission is in V V . For the
monostatic case σHH′

Br becomes zero.

3 Results

Fig. 1 shows the NRCS, in the major polarizations, computed
from a run of a coupled ocean-atmosphere model near the coast
of Calfornia. The top panels (based on the Elfouhaily long-wave
spectrum) clearly show the directional dependence of backscat-
ter. The line-of-sight or Harmony-A is more aligned with the
wind than the line-of-sight of Harmony-B, resulting in a higher
NRCS. Several linear and meandering features are visible that
closely coincide with wind-speed anomalies and currents.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Modelled observed NRCS (dB) in the major polarization near California using the output of a scientific workbench run.
The top panels (a-c) are computed using an equilibrium approach with a Elfouhaily long-wave spectrum. The middle panels
(d-f) are generated with SWAN as the long-wave spectrum. The bottom panels (g-i) show the normalized linear differences
between (a-c) and (d-f) with in the background the sea surface temperature.



The second row of panels shows the results of the SWAN
model. The differences with the Elfouhaily model are shown in
the bottom panels. The effects of currents on the wave spectrum
are not explicitly modelled in the Elfouhaily model, which re-
sults in the largest discrepancies between the two models. The
enhanced short-scale roughness near currents primarily result
from enhanced wave breaking [8], which is primarily a local
effect. Wind anomalies and currents can also introduce direc-
tional changes to the long-wave spectra, resulting in changes
in the energy exchanges between long waves and short waves.
Large-scale differences between the Elfouhaily and the SWAN
model also arise from differences in wave age and (asymmetric)
spreading leading to changes in short-wave energy balances. As
differences in NRCS are typically in the order of 10-20% and
vary with direction, there are consequence for the inversion of
high-resolution stress-equivalent wind products.

Fig. 2 shows the observed geophysical Doppler from the
Elfouhaily and SWAN models. Whereas the NRCS is primar-
ily regulated by short waves in the form of Bragg and wave
breaking, the wave-Doppler results from line-of-sight-projected
surface velocities of longer waves, O(10 m), and their tilt and
hydrodynamic modulations of shorter waves [3]. The interpre-
tation of the wave-Doppler is due to its dependence on both
short and long waves even less trivial than the NRCS. A change
in observed Doppler direction and magnitude might therefore
arise from either a current, a change in the short-wave spec-
trum or a change in the long-wave spectrum. Longer waves
are refracted by currents and slowly react to wind variations,
as their relaxation scales are large O(10 km)[7]. Shorter waves
react more rapidly to changing conditions and therefore change
the tilt and hydrodynamic modulations. To help with the in-
terpretation, or inversion, of Harmony’s observations at high-
resolution, a classification based on the scene’s features might
therefore be required.

4 Conclusions

At small scales, the observed NRCS and Doppler deviate sub-
stantially from stead-state conditions. Both multistatic radar
observations are affected by currents, winds and depend on
the inverse wave age. The retrieval of high-resolution stress-
equivalent wind and ocean-surface currents is therefore non-
trivial and we cannot rely on traditional GMFs designed for
low resolutions. Removal of the wave-Doppler based on solely
stress-equivalent wind and inverse-wave age is not suitable for
high resolutions, as other relaxation scales are involved. The
inversion of both parameters requires an integrated approach
involving multiple scales, SAR-spectral parameters and might

even profit from an adjoint approach.
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Figure 2: Modelled observed Doppler (Hz) in the major polarization near California using the output of a scientific workbench
run. The top panels (a-c) are computed using an equilibrium approach with a Elfouhaily long-wave spectrum. The middle panels
(d-f) are generated with SWAN as the long-wave spectrum. The bottom panels (g-i) show the linear difference between (a-c)
and (d-f) with in the background sea surface temperature.
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Synthetic aperture radar (SAR) offers the possibility to observe the sea surface circulation with very high spatial resolution.
These observations are particularly relevant in coastal areas and shelf seas, where the ocean circulation is complex and highly
variable. SAR has been routinely providing valuable information on sea surface winds and waves for many decades. During
the last decade, a new application of SAR measurements based on the analysis of the Doppler shift has emerged [1, 2], opening
the possibility to measure directly the surface currents. There are still however many unresolved questions and challenges.
One of the challenging questions is the wind-wave-current interaction and its effect on the wind and wave retrieval. There are
two major techniques for extracting ocean surface currents from SAR data: Along-track interferometry (ATI) and the Doppler
centroid anomaly (DCA) analysis. The retrieval of surface velocity using these two techniques has been demonstrated in several
papers, e.g. [3, 4, 1, 5].

A known effect that makes the retrieval of the ocean currents from SAR data challenging is the so-called wave-induced
Doppler shift or velocity bias. This effect is due to the correlation between the normalized radar cross section (NRCS) and
Doppler shift modulations, which are generated by the long modulating waves. Thomson [6] was probably the first to show that
the Doppler spectrum was considerably shifted from the frequency of the Bragg waves. He attributed this to the fact that both
the radar cross section and the radial surface velocity are functions of the position of the radar footprint along the wave.

The Agulhas Current is the strongest western boundary currents in the southern hemisphere. The region of the Agulhas
Current is characterized by a complex upper ocean dynamics involving a wide range of mesoscale and submesoscale processes.
It thus provides an ideal natural laboratory for oceanographers and for testing remote sensing sensors and techniques. It is
known that oceanic currents modify the wave filed properties, e.g. [7]. The Agulhas region has attracted the attention due to the
rich interaction of the Agulhas Current system with wave field, e.g. [8]. This interaction is manifested in the SAR and optical
images [8]. The manifestation of this interaction has has been reported by previous authors using the C-band SAR on-board
Envisat [9] and Sentinel-1 [10] and also using Sentinel-2 imagery, e.g. [11].

In this paper the manifestation of the interaction of the Agulhas Current with the wind and the wave fields is presented and
discussed based on the acquisitions provided by the X-band ATI-SAR TanDEM-X. To our knowledge this is the first time the
Agulhas Current is mapped with an X-band spaceborne ATI-SAR. The backscatter and the Doppler shift derived from these
unique acquisitions of the interferometric SAR over the Agulhas Current with very high spatial resolution (few hundreds of
meters) are analyzed. Collocated existing products of ocean surface wind, ocean surface current, sea surface temperature and
significant wave height are also analyzed to help the interpretation of these SAR observations.

1. PRELIMINARY RESULTS

Figure 1 shows an example of the preliminary results from a TanDEM-X acquisition on 2015-11-05, together with model data
for sea surface current and sea surface temperature (SST). Panels (a) and (b) depict the observed NRCS and Doppler centroid
(DC), respectively. These observations contain complex signatures of the varying wind and current fields in addition to surface
and internal waves. The DC image captures accurately the boundary and the intensity of the Agulhas Current. Moreover, these
maps show unprecedented fine structure of the Agulhas Current and its interaction with the wave field. The core of the Agulhas
Current is clearly detected by a increase in the DC image around -35 degrees latitude. The pattern depicted by the backscatter
images is on the other hand much more dependent on the wind and sea state than on the current velocity. This is manifested by
a sharp enhancement of the NRCS at the northern edge of the current. The structure of the current core can also be discerned
by increase in the NRCS image around the same latitude as of the DC maximum.

Panel (c) depicts the model current speed. It can be observed that the northern boundary around -34.5 degrees latitude
depicted by the NRCS and DC images is unresolved by the model. This is probably an indication that it is due to a wind front



rather than an oceanic front. The wind field will be analyzed later to investigate this. Panel (d) depicts the azimuth profile of
the model current speed, SAR-derived radial velocity and the sea surface temperature. The model current and SST are provided
by the Copernicus product GLOBAL MULTIYEAR PHY 001 030. It can be observed that the SAR-derived velocity locates
correctly the current core which reaches 1.5 m/s. The model current and SST both peak roughly at the same location but the
variation is much more smoother than SAR observation.

The influence of the Agulhas Current on the wind and wave field retrieval will be investigated. The inversion of the
backscatter to wind speed, without taking the current into account, would lead artificially high estimates of SAR-derived wind
speeds in the regions of enhanced backscatter. Note that the effect of the current on the wind and wave field retrieval will also
impact the current retrieval via the wave-induced Doppler shift.

To summarize, this paper analyses collocated NRCS and DC images acquired by the along-track interferometric SAR
TanDEM-X over the Agulhas Current. These observation present rich manifestations of the wave-current and wind-current
interaction at very high resolutions not observed before from satellites. The roughness and velocity signatures depend on the
wind, wave and the current fields. A case of particularly enhanced roughness, which is probably due to a convergent wind front
is reported. More detailed investigation of the cause of this sharp enhancement of the NRCS in regions of strong current shear
will be carried out. Finally, more cases from other TanDEM-X acquisitions will be shown at the conference.
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Fig. 1. Example of ATI-SAR observations and model data illustrating part of the Agulhas Current system. (a) NRCS, (b) DC
estimated from the ATI phase, (c): Model current speed (the black rectangle depicts the satellite scene), (d): Azimuth profile of
SAR radial velocity (red), model current speed (blue) and SST (black).
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20 years ago, at the 2003 Second Workshop on Coastal and Marine Applications of SAR in Svalbard, the author 
of this abstract presented a first surface current field from a spaceborne interferometric SAR, based on a Shuttle 
Radar Topography Mission (SRTM) data set acquired over the Dutch Wadden Sea in February 2000 and provid-
ed to him by H. Runge of the German Aerospace Center (DLR) [1]. Subsequently, a "white paper" on findings 
from the workshop regarding the state of the art in current measurements by spaceborne SAR was published [2]. 
At SeaSAR 2012 in Tromsø, Norway, we discussed early along-track InSAR results from TerraSAR-X and 
made contributions to another conference paper [3]. SeaSAR 2023 in Svalbard is a good opportunity to review 
our TerraSAR-X / TanDEM-X results obtained since the launch of these satellites and offer them as input to the 
next "white paper" on the state of the art. In this abstract we will discuss a few examples that can be shown. 

TerraSAR-X, launched in 2007 and still in good condition at the time of writing this abstract in early 2023, can 
be operated in an experimental divided-antenna mode that permits along-track interferometry with an effective 
baseline on the order of 1 m as well as polarimetry [4]. Numerical simulations before the launch predicted a per-
formance for surface current measurements comparable to, or a little better than, the one of SRTM, with a resid-
ual uncertainty better than 0.1 m/s at a spatial resolution better than 1000 m [5]. First results based on actual Ter-
raSAR-X data, acquired in 2008 and processed by S. Suchandt of DLR, confirmed that the data quality was at 
the expected level [6],[3]. In another paper from 2015, we demonstrated on the basis of divided-antenna mode 
data how the quantitative interpretation of SAR signatures of oceanic internal waves could be improved when 
Doppler velocity signatures were available in addition to the usual intensity signatures [7]. 

Significantly improved current measuring capabilities became available with the launch of a second TerraSAR-
X type satellite in 2010, built specifically to fly in close formation with the first one for the TanDEM-X mission, 
with the main objective to obtain a global high-resolution map of the Earth's land topography [8]. As discussed 
in [5], the optimal effective along-track baseline for current measurements by X-band along track InSAR is on 
the order of 30 m, a factor of 20-30 longer than what is possible with the divided-antenna mode of a single Ter-
raSAR-X satellite. To enable useful cross-track baselines for topographic measurements without colliding or 
drifting apart from each other, the two TanDEM-X satellites were on orbits that made them revolve around each 
other in such a way that the effective along-track baseline varied between 0 near the north and south pole and 
700-900 m near the equator during every orbit, such that the best along-track baselines were achieved still near 
the poles and the baselines at more interesting latitudes were too long. However, there were a few opportunities 
for current measurements with good baselines at lower latitudes, as shown in a paper by R. Kahle of DLR [9]. 

Again with help from our colleagues at DLR, we were able to obtain two TanDEM-X images of a region with 
strong tidal currents between the Orkney Islands (Scotland) in early 2012. The effective along-track baselines in 
the two cases were about 25 m and 40 m, respectively. An analysis of these data was presented in [10], together 
with a comparison with a divided-antenna mode data set and reference currents from a numerical model. In addi-
tion, C. Rossi of DLR performed Doppler centroid anomaly analysis (DCA) with single images from the inter-
ferometric data sets to evaluate the capabilities of that technique, which can be applied to raw data from any 
conventional SAR, as well. It was shown that the quality of the DCA results was close to that of the divided-
antenna interferometry results, which is not surprising in view of the fact that the effective baseline of the divid-
ed-antenna setup is just a small fraction of the optimal baseline, causing a low sensitivity to scatterer velocities 
and a lot of noise that needs to be reduced by averaging over many pixels. In contrast, the TanDEM-X results 
with near-optimal baselines exhibited a much better data quality, with a residual uncertainty of 0.1 m/s at an ef-
fective resolution on the order of 30 m instead of the ~1000 m of the DCA, divided-antenna mode, and SRTM 
results. This was consistent with our predictions and shown to be sufficient to resolve orbital motions of swell 
waves. An example figure from [10], showing wave signatures in the intensity Doppler velocity images, is re-
produced in Fig. 1 below. 
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Fig. 1: Subsection of a TanDEM-X interferogram amplitude (left) and Doppler velocity (right) image with clear wave signa-

tures, acquired at Orkney, 26 Feb 2012, from [10]. Area size ≈ 10 km × 10 km, multilooked pixel size = 8.40 m × 8.46 m. 

Other activities with TanDEM-X data include the acquisition of two series of image pairs over the open ocean 
with slowly changing along-track baselines, initiated by H. Runge with the idea to measure the temporal decay 
of the signal autocorrelation function (equivalent to a decrease in coherence) directly instead of deriving it from 
Doppler bandwidths or estimating it based on numerical simulations. Preliminary results, which once again indi-
cated good agreement with numerical model predictions, were presented at EUSAR 2014 [11]. S. Suchandt pub-
lished a paper based on similar TanDEM-X data in 2017 [12]. Other TanDEM-X studies that should be men-
tioned here are the ones by Dammann, Elyouncha, Eriksson, and coworkers in Sweden on various aspects on 
current and sea ice motion retrievals, to which the author of this abstract made small contributions [13][14]. 

A totally different approach to current measurements with TerraSAR-X was demonstrated in [16]. It makes use 
of spotlight-mode images acquired with dwell times of up to several seconds. While the long dwell time can 
make images of the moving ocean surface look blurry initially, it is possible to reprocess the data into short time 
series of images with shorter dwell times, in which wave motions become visible like in a video. This permits 
the computation of wavenumber-frequency spectra and the use of analysis methods similar to the ones developed 
for marine radar data [17]: The theoretical dispersion relation of ocean waves can be used to separate actual 
ocean wave patterns from other contributions, such as the ones of higher harmonics of the waves and nonlineari-
ties of the SAR imaging mechanism, as well as noise. As a result, a clean spectrum of the linear signatures of 
ocean waves is obtained, which is easier to invert into an ocean wave spectrum than the full image spectrum of a 
single SAR image. In addition, water depths and surface current vectors can be obtained as byproducts of the 
process of fitting the theoretical dispersion relation to the observed spectral energy distribution. An example of 
extracted wave signatures and the corresponding depths is shown in Fig. 2. Unfortunately, we do not have a 
good example of an extracted current field so far. 

   
Fig. 2: Example of a wave pattern and water depth extraction result for an area at Rottnest Island (Australia), after [16]. 

Left: TerraSAR-X Sliding Spotlight Mode image from 20 Oct 2009, 11.7 km × 10.4 km, integration time = 1.22 s; center: 
extracted wave signatures; right: extracted depths between 60 m (blue) and 0 (yellow), grid spacing = 512 m × 512 m. 
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Abstract – OSCAR (Ocean Surface Current Airborne Radar) is a new airborne instrument which provides unique 2D synoptic 
views of ocean and atmosphere dynamics (currents, waves, winds) below km-scale. OSCAR is the airborne demonstrator of 
SeaSTAR, an innovative satellite mission concept currently under study in Phase 0 of ESA Earth Explorer 11. SeaSTAR aims to 
observe ocean submesoscale dynamics and small-scale atmosphere-ocean processes in all coastal, shelf and polar seas by 
providing simultaneous measurements of current and wind vectors at 1 km resolution with accuracy better than 0.1 m/s and 2 
m/s respectively. A key objective of SeaSTAR is to characterize, for the first time, the magnitude, spatial structure, regional 
distribution and temporal variability of upper ocean dynamics on daily, seasonal and multi-annual time scales, with particular 
focus on coastal seas, shelf seas and Marginal Ice Zone boundaries. 

OSCAR was flown over the Iroise Sea (West of Brittany, France) in May 2022 during the SEASTARex campaign. The OSCAR 
operations and products are representative of the spaceborne concept, with geophysical parameters and accuracies that directly 
relate to those of the SeaSTAR satellite mission. In itself, OSCAR provides a new observing capability that will improve our 
understanding of microwave Doppler sensing of the ocean thanks to its unique Doppler and scatterometry capabilities in three 
azimuth directions. OSCAR’s high-resolution images (8 metres pixels resolution) over a 5km swath provide 2D synoptic views of 
ocean and atmosphere dynamics below km-scales that are highly relevant to support and complement scientific investigations of 
fine-scale ocean-atmosphere processes based on in-situ, satellite and model data. 

In this paper, we give an overview of the OSCAR system, of the SEASTARex campaign over the Iroise Sea in May 2022 and 
present the main preliminary results about the performance and imaging capability of the instrument. 

 
 
 
OSCAR (Ocean Surface Current Airborne Radar) is a new airborne instrument which provides unique 2D synoptic views 
of ocean and atmosphere dynamics (currents, waves, winds) below km-scale. 
 
OSCAR is a Ku-band (13.5 GHz) SAR system with Doppler and scatterometry capabilities in three azimuth look 
directions. It is an evolution of the Wavemill instrument where only squinted beams in two directions where only 
considered [1]. The OSCAR instrument features an along-track interferometric (ATI) baseline in two lines-of-sight 
squinted 45° fore and aft from the broadside direction. The fore and aft antenna pairs provide interferometric Doppler 
measurements in two views angularly separated by 90 degrees. This ensures two orthogonal measurements of the ocean 
surface motion velocity that enable the retrieval of the total ocean surface current vector. In addition, backscatter 
measurements from the broadside antenna in the zero-Doppler direction serve to retrieve wind direction and wind speed, 
which are critical to correctly measure total ocean surface currents. 
 
In each line-of-sight, the ocean surface motion sensed by the microwave radar (after correcting for navigation and 
geometry) has two constituents: the total ocean surface current – consisting of all currents contributing to actual horizontal 



 

 

transport of water – and a measurement bias associated with the Doppler signature of the surface scatterers responsible for 
the backscatter, a term known as Doppler wave bias or Wind-wave induced Artefact Surface Velocity — WASV [2]. The 
WASV is caused by the phase velocity of the surface scatterers responsible for the microwave backscatter (e.g. Bragg 
waves) and the effect of the orbital motion of longer ocean waves. The magnitude of the WASV can reach 0.5-1 m/s and 
is, at first order, a function of the wind direction. A number of geophysical model functions (GMFs) have been published 
in recent years to correct this effect 
 
OSCAR is the airborne demonstrator of SeaSTAR, an innovative satellite mission concept currently under study in Phase 0 
of ESA Earth Explorer 11 [3]. SeaSTAR aims to observe ocean submesoscale dynamics and small-scale atmosphere-ocean 
processes in all coastal, shelf and polar seas by providing simultaneous measurements of current and wind vectors at 1 km 
resolution with accuracy better than 0.1 m/s and 2 m/s respectively. A key objective of SeaSTAR is to characterize, for the 
first time, the magnitude, spatial structure, regional distribution and temporal variability of upper ocean dynamics on daily, 
seasonal and multi-annual time scales, with particular focus on coastal seas, shelf seas and Marginal Ice Zone boundaries. 
 
OSCAR was flown over the Iroise Sea (West of Brittany, France) in May 2022 during the SEASTARex campaign. The 
OSCAR operations and products are representative of the spaceborne concept, with geophysical parameters and accuracies 
that directly relate to those of the SeaSTAR satellite mission. In itself, OSCAR provides a new observing capability that 
will improve our understanding of microwave Doppler sensing of the ocean thanks to its unique Doppler and scatterometry 
capabilities in three azimuth directions. OSCAR’s high-resolution images (8 metres pixels resolution) over a 5km swath 
provide 2D synoptic views of ocean and atmosphere dynamics below km-scales that are highly relevant to support and 
complement scientific investigations of fine-scale ocean-atmosphere processes based on in-situ, satellite and model data. 
 
Figure 3 presents first results from OSCAR. The aircraft is heading North with the antennas looking on the left side. The 
figure shows a general pattern of strong current flowing to the South-West. The position of the gradient agrees well with 
the satellite NovaSAR roughness image taken close to the OSCAR acquisition. On the southern part of the OSCAR 
acquisition we observe a secondary circulation which is in agreement with numerical model and X-band marine radar. 
 
In the presentation, we will give an overview of the OSCAR system, of the SEASTARex campaign over the Iroise Sea in 
May 2022 and present the main results about the performance and imaging capability of the instrument. 
 

  
Figure 1 Flight path during the Brest campaign execution. Figure 2 The aircraft and belly pod where the the OSCAR system and 

gimbal are installed. 
 



 

 

 
Figure 3: (background) NovaSAR roughness image in S-band at the time of OSCAR acquisition. (in color) OSCAR 
retrieved 2D current along the track. Near range is on the East part of the image. 
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Artem Moiseev1, Fabrice Collard2, Johnny A. Johannessen1,3

1Nansen Environmental and Remote Sensing Center (NERSC), Bergen, Norway
2OceanDataLab (ODL), Locmaria-Plouzané, France
3Geophysical Institute, University of Bergen, Norway

Observations from satellite Synthetic Aperture Radars (SARs) can complement existing ocean
observing systems with systematic kilometer-resolution observations of the total surface radial
current velocity in the open ocean and coastal zones. Reliable and systematic observations of
the total ocean surface currents are essential for monitoring, model validation, search and
rescue operations, pollution applications, and climate research. However, such observations
are challenging and expensive to acquire and, hence, rarely available on a systematic basis. In
this study focusing on the greater Agulhas Current, the surface current retrieval algorithm for
Sentinel-1  developed and validated in the ESA WOC project is presented.

We retrieved surface current radial velocities from the SAR Doppler Centroid Anomaly (DCA).
This DCA is derived from the frequency difference between transmitted and backscattered
signals after correcting for the satellite motion (geometric Doppler). Over the ocean, the DCA is
a measure of the surface motion induced by the combination of the wind and waves (sea state)
and ocean surface currents in the antenna line-of-sight direction. The sea-state-induced
contribution to the DCA can be estimated from Empirical Geophysical Model Functions (GMFs),
such as CDOP3SiX, for given radar incidence and polarization, based on wind and wave fields
from collocated models. We evaluated the impact on the DCA of different global wind (ECMWF,
NCEP GFS, ERA5) and wave (MFWAM, WAVERYS, WW3) model forecasts and reanalysis.

Although usage of the model fields is convenient due to their regular availability, it also yields
limitations related to the accuracy and representativeness of the model product which will
strongly impact the estimate of the sea state contribution to the DCA and, consequently, the
SAR-derived radial surface current retrievals. As such we explore the potential of using
SAR-derived wind and wave information to estimate the sea state DCA. We used wind fields
routinely provided in Sentinel-1 L2 OWI product. For the wave field, we tested Sentinel-1 L2
OSW product as well as cross-spectra estimates provided for the Wave (WV) mode
acquisitions. The new product was then compared with the previous product (see Figure 1b).
Moreover, it was compared with the QG current product derived from altimetry (Figure 1c). Both
SAR- and altimetry-derived surface current products agree on the location of the main ocean
surface current features. We also demonstrated the potential of using the Sentinel-1-derived
ocean surface current to validate model forecasts in the region. We collocated the SAR RVLs
with ocean model fields from Mercator 1/12 deg. model (available from CMEMS) along the
southern African coast. The model can reproduce the Agulhas Current features, however,
disagreement with observations in terms of the location and velocity of meanders and eddies
are evident.



In summary, we have demonstrated that the Sentinel-1 acquisition can provide valuable
observations of the ocean surface current which are essential for systematic model validation,
applications, and climate research. We also demonstrated the potential of using SAR-derived
surface currents for model validation. The accuracy of the ocean surface current radial velocity
retrieved from SAR, on the other hand, relies on the precise removal of the sea-state-induced
signal. We developed and demonstrated a new approach for estimating this sea state
contribution based on the wind and wave information which can be directly extracted from SAR
observations. This approach provides a more reliable way to estimate sea state DCA compared
to using auxiliary model fields. However, the algorithm requires more testing and systematic
validation. The developed methodology is promising and ready to be applied to the operational
Sentinel-1 mission (sustained operation until 2030) as well as for candidate future satellite
missions designed for monitoring of the upper ocean circulation (e.g., SEASTAR and Harmony).

Figure 1. The Sentinel-1A SAR scene acquired in ascending pass on 7 July 2019 at 16:36:36: (a) Total
surface radial velocity (i.e., wave- and surface-current-induced signal) from the Doppler shift; (b) Ocean
surface current radial velocity (i.e., after removal of the sea-state-induced signal) from the Doppler shift;



(c) Normalized radar cross-section. The blue/red color in a, b indicates south-westward/north-eastward
velocity. The SAR scene is collocated with: (d) Wind speed (color) and direction (arrows) at 10m height
from the ECMFW; (e) Geostrophic velocity from altimetry observations; (f) Satellite-derived Sea
Surface Temperature field. The black frames indicate the footprint of the SAR acquisition frames. The
dashed contours in subplots b, c, e, f represent the position of the cyclonic (CE) and anticyclonic (ACE)
eddies detected in the geostrophic velocity field
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Abstract

The  Doppler  Centroid  (DC)  frequency  shift  recorded  over  ocean  surfaces  by  Synthetic
Aperture Radar (SAR) is  a sum of contributions from satellite attitude/antenna and ocean
surface motion induced by waves and underlying ocean currents. A precise calibration of the
DC  is  needed  in  order  to  predict  and  subsequently  remove  contributions  from
attitude/antenna.

Recently, a novel data calibration technique based on combining gyroscope telemetry data
and global Sentinel-1 WV OCN products has demonstrated promising capabilities to quantify
the Sentinel-1 (S1) attitude and hence provide calibrated estimates of the corresponding DC
frequency shift. For validation purpose, one year of S1 a and b WV OCN products, orbit data
and  gyroscope  data  are  combined  providing  one  year  of  restituted  attitude  data
(AUX_ESTATT). For the same time period, mean DC bias versus elevation angle is computed
on a daily  basis  from S1 IW land acquisitions (AUX_DCBIAS).  The AUX_ESTATT and
AUX_DCBIAS products are subsequently used to generate global data set of calibrated S1
WV OCN products as well as subsets of calibrated S1 IW OCN products from predefined
super sites (Norwegian Coast, Agulhas, Mediterranean). In this paper we assess the accuracy
and precision of the calibrated DC frequency of S1 WV and IW acquisitions acquired over
both  land  and ocean  areas.  The  DC standard  deviation  (STD) and  bias  show significant
reduction for both satellites and for all swaths. Assessment of the performance of global WV
data  shows  a  STD  around  or  less  than  6Hz,  while  the  BIAS  is  less  than  2  Hz.  The
performance is very similar for both satellites and for both swaths. For IW the STD is similar,
but small DC bias between sub-swaths is sometimes observed.

The remaining errors are mainly due to change in antenna characteristics on a timescale not
captured with the procedure used to generate the mean DC bias stored in the AUX_DCBIAS
file. Such changes may come from thermo-elastic effects and/or temperature compensations
applied to the antenna. This directly affects the IW mode DC, where it is also clearly visible
in some scenes. For WV mode it mainly impacts the statistics.

S1 WV mode has achieved a performance (i.e. accuracy and precision) within the requirement
for climatology mapping of global ocean current features. It will be demonstrated on a longer
time serie than the validation year.

For IW mode, we have achieved a precision within the requirement, but use of land areas
within  the  scene  is  still  required  to  achieve  the  required  accuracy  over  all  sub-swaths.
Improved accuracy  using  DC over  nearest  land  will  be  demonstrated  and the  limitations
discussed.  Remaining  issues  related  to  antenna  temperature  compensation  and  Level  0
Doppler estimates will also be discussed.



Figure: Histograms of observed (---) and calibrated (___) DC from S1a 
WV (left) and S1a IW (right) modes.  Data acquired over land areas 
within the period 01 May 2019 to 30 April 2020.
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ABSTRACT

We evaluate the estimations of oceanic surface currents
retrieved from C-band synthetic aperture radar onboard
Sentinel-1A/B. The assessment is carried out using refer-
ence measurements provided by a network of coastal high-
frequency radars on the French Rivieira over 6 months.

1. INTRODUCTION

Real-time observations of coastal ocean surface currents have
been routinely performed by high-frequency radars (HFR) for
nearly half a century, starting with the pioneering works of
Crombie [1] and Barrick [2]. Nowadays, the vast majority of
HFR operate from shore in the HF and UHF frequency bands,
typically from 5 to 50 MHz. Within this range, commercial
HFR are proved to provide reliable estimates of surface cur-
rents at high spatial (typically 5 km) and temporal (typically
30 min) resolution, up to 100 km from coast [3]. The Mediter-
ranean Institute of Oceanography (MIO) and the University of
Toulon have been operating for more than one decade a net-
work of such systems, manufactured by Helzel Messtechnik
GmbH [4]. The network is located on the Western French
Riviera, in the vicinity of Toulon, and consists in an original
arrangement of spatially diverse systems with 2 distinct trans-
mitters and receivers on 3 remote sites [5]. Such multistatic
geometry allows to derive the total vector surface current on
a 1 km×1 km Cartesian grid cell every 20 min whose quality
have been assessed through two campaigns of in situ mea-
surements [6]. Besides a wide range of oceanographic and
operationnal applications, the Toulon HFR network is also
an experimental ground for developing new signal processing
techniques [7, 8].

Aside from ground-based systems, the measurement of the
total suface current velocity from space at high resolution re-
mains a challenge partially met by synthetic aperture radars
(SAR) such as ASAR (formerly onboard ENVISAT) and C-
SAR (currently onboard Sentinel-1). It is well known that
SAR does not only measure the magnitude of the backscat-
tered signal but also the Doppler frequency offset induced by

the velocity of the scatterers. However, the Doppler shift is
not simply proportionnal to the line-of-sight surface current.
The surface current actually represents a minor contribution
to the total frequency anomaly. The measurement is affected
by a number of instrumental and environmental biases. While
the former can be withdrawn by calibrating the frequency
measurements (see, e.g., [9, 10]), doing so is less straightfor-
ward for the latter. The geophysical Doppler shift is yet dom-
inated by wave-induced surface displacements whose contri-
bution to the frequency anomaly can not be evaluated directly
from the SAR measurements. One popular way to determine
the wave-induced Doppler bias is to use a geophysical model-
ing function (GMF) such as CDOP [11]. This empirical GMF
relates the wave bias to the surface wind speed and direction
than can be routinely obtained from SAR measurements.

As of now the use of surface currents inferred from SAR
measurements has not received a place within the oceano-
graphic community. Such current estimations yet suffer from
a lack of evaluation and uncertainty analysis. In the past few
years, there have been isolated atempts to assess the validity
of surface currents retrieved from Sentinel-1A/B using coastal
HF radars [12, 13]. The results of these studies are promising
and we contribute to this effort by using reference estimates
provided by the HF radar network of Toulon.

2. EVALUATION OF SURFACE CURRENTS

Sentinel-1A/B measurements have been processed using the
standard scheme (we refer to Fig. 1 of [9] for a description).
The vector surface currents provided by the HFR network
have been interpolated along the Sentinel-1 cartesian grid and
projected along the SAR line-of-sight. An example of com-
parison between S1A/B and HFR currents is given on Figs. 1c
and f. After visual inspection of the whole dataset, a total of
6 months of colocalized measurements have been compared
from July 2020 to March 2021, accounting for about 150,000
individual comparisons.
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Fig. 1. Maps (colorscale) obtained off of Toulon on March 1st, 2021, at 17:30 UTC: (a) 2D surface current measured by the
coastal HFR network of Toulon; (b) 2D 10-m wind obtained using CMOD7; (c) HFR surface current projected along S1A
line-of-sight; (d) SAR NRCS; (e) wind-wave Doppler bias computed with CDOP; (f) radial surface current obtained from S1A
measurements [14].

2.1. Overall Results

Fig. 2 shows the estimated surface velocity inferred from
S1A/B SAR versus the projected surface velocity retrieved
by the HFR network of Toulon. The root mean square er-
ror (RMSE) is of 21 cm s−1. Thorough comparisons between
ascending and descending orbits, Sentinel-1A and -1B or sur-
face wind velocities will be presented during the conference.
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Fig. 2. Scatter plot (color scale, counts) of estimated surface
velocities using the HFR network versus S1A/B.

2.2. Wave-induced bias

Within the classical processing scheme for inverting the ra-
dial surface current from the SAR Doppler shift, the wave-

induced Doppler bias is given by a model (such as CDOP) as
a function of the relative wind speed and direction

fww = CDOPVV(u10, θ10) (1)

and is then substracted from the measured Doppler anomaly
to give the current-induced Doppler shift

fc = fdca − fww (2)

where fc = 2Ur/λ0. Here we use the surface current ve-
locity provided by the HFR network as an a priori informa-
tion for the frequency shift, plus the wind information re-
trieved from the SAR NRCS, to retrieve the wave-induced
bias. This observed bias is then used to train a simple neural
network, CDOP-TLN, as an alternative to CDOP suited for
the observations in the vicinity of Toulon. This simple, em-
pirical model yields to better estimates of the wave-induced
bias than CDOP (Fig. 3), being however only valid in the
coastal Mediterranean sea.

3. CONCLUSIONS AND FUTURE WORK

This study shows a remarkable agreement between the esti-
mations of surface currents provided by Sentinel-1A/B and
the HFR network of Toulon. Our ongoing research focuses
on the thorough evaluation of these estimations. Furthermore,
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we wish to refine our CDOP-TLN model by using the wave
height information retrieved from the HFR.
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M. Saillard, and A. Molcard, “The Multistatic Oceano-
graphic HF Radar Network in Toulon,” in IEEE Int.
Radar Conf., Toulon, FR, 2020.

[6] D. Dumas, A. Gramoullé, C.-A. Guérin, A. Molcard,
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main, “High-Frequency Radar Ocean Current Mapping
at Rapid Scale With Autoregressive Modeling,” IEEE J.
Ocean. Eng., vol. 46, no. 3, pp. 891–899, 2021.
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Preliminary results of Sea Ice Classification using
combined Sentinel-1 and Sentinel-3 data

Stefan Wiehle, Dmitrii Murashkin, Anja Frost, Christine König, Thomas König

Abstract—A sea ice classification is trained using a combination
of Synthetic Aperture Radar (SAR) from Sentinel-1 and an
existing sea ice classification using optical-thermal data from
Sentinel-3. Compared to a SAR-only classification, preliminary
results show improved classification reliability especially in open
water areas.

Sea ice is constantly changing: wind and ocean currents
can push together large ice masses and close leads; the pack
ice formed by these processes is often not navigable even by
icebreakers. Combining radar measurements of Sentinel-1 and
results of a sea ice classification using the optical/thermal mea-
surements of the SLSTR instrument onboard Sentinel-3 offers
the possibility to improve the sea ice situation awareness. In
radar data, different ice classes can mostly be distinguished
by different radar backscatter, but some ice classes exhibit
a similar backscatter, limiting the applicability of radar-based
classification. Sentinel-3 data contain optical/thermal information
of water, ice, and snow, allowing a refined ice class separation
after classification, but the observations are in lower resolution
and clouds may obstruct the view. The fused classification is
based on a Convolutional Neural Network (CNN) classifier and
discriminates 6 surface types. Its input data are the HH and HV
polarization channels of the Sentinel-1 image plus pre-classified
Sentinel-3 images with continuous RGB labels. Improved sea ice
classification allows planning of safer routes and better awareness
for possible dangerous situations for polar ships.

Index Terms—Synthetic Aperture Radar, SLSTR, Sea Ice
Classification, Sentinel-1, Sentinel-3, Sensor Fusion

I. INTRODUCTION

Navigation through ice-infested waters is a challenge even
for icebreakers. With the ongoing decline of polar sea ice
cover, more shipping is expected in polar waters, espe-
cially commercial shipping along North-East- and North-West-
Passage. Knowledge of the presence and type of sea ice is
crucial for vessel safety. While sea ice charts are provided on a
regular basis by several national sea ice services, their usabilty
in changing sea-ice conditions is limited by their coarse resolu-
tion and low update frequency. An automated processing chain
making high-resolution sea ice information generated from
satellite data available directly to ship navigators will increase
maritime safety in ice-infested waters. Such a processing chain
is currently being developed using two sources of satellite
data: Sentinel-1 (S-1) Synthetic Aperture Radar (SAR) data
and Sentinel-3 (S-3) optical/thermal data from the Sea and
Land Surface Temperature Radiometer (SLSTR).
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SAR detection is based on surface backscatter, in case
of sea ice the SAR backscatter depends on the ice surface
roughness and is used to discrimitate between different ice
ages and types. The SLSTR data contains optical and thermal
information, the sea ice classification is based on the surface
(and sub-surface) reflectivity in different bands. Both sensors,
hence, use different phenomena for sea ice observations and a
fused classification is expected to have a higher quality than
individual classifications using only one type of data. This
submission covers the methods and workflow of the fused
classification and preliminary results.

II. METHOD

This section covers the generation of the SLSTR classfica-
tion, data preparation for machine learning, and a description
of the applied CNN classification.

A. SLSTR sea ice classification

The sea ice classfication from SLSTR data was presented
in [1] and more details are provided therein. The classification
uses the 9 bands of the SLSTR instrument for optical and
thermal discrimination of ice classes and was extensively
validated using official ice charts, comparisons to higher
resolution satellite imagery, and webcam recordings. Its output
is a continuous, three channel (RGB) sea ice classification
with 19 surface types, of which 8 classes include open
water and sea ice with up to approximately 50 cm thickness.
Clouds are masked out using information from three of the
SLSTR channels. The current processor was further improved
compared to the version presented in [1], for example with
refined cloud masking and better operational useability.

B. Data preparation

Two sources of satellite data are merged in this process:
Sentinel-1 L1B scenes and the Sentinel-3 L2 classifed images.
The S-1 data is acquired in Extended Wide Swath mode (EW)
with a swath width of 410 km and consists of two channels,
one for each polarizations (HH, HV). The data are delivered
in GeoTiff format with a pixel spacing of 40m. The images
are oriented in satellite flight direction and not projected
in a Coordinate Reference System (CRS); georeferencing is
supplied by Ground Control Points (GCPs). The S-3 data are
ingested as pre-classified 3-channel RGB GeoTiffs, projected
in a polar-stereographic CRS, with a swath width of 1420 km
and a pixel spacing of 500m.

For further processing, both images have to be aligned, i.e.
they need to have the same coverage, projection, and pixel
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spacing. Therefore, first the S-1 data is warped to the CRS of
the S-3 data. An intersection polygon of both scenes is then
made and both scenes are cut to the extensions of this polygon.
Since the S-1 image has lower coverage than the corresponding
S-3 image, it is only cut in case of partial overlaps. The S-3
scene is then upsampled to the higher resolution of the S-1
scene, which finishes the alignment.

A binary validity mask in the same alignment is then
created, marking areas where both scenes have valid data.
Invalid data areas are clouds in the S-3 classification and
black boundaries from reprojecting in both S-1 and S-3 data.
Only pixels with valid data are later used in the training and
classification.

The full stack of files for training consists of four files and
seven channels:

• S-1 σ0-calibrated image (HH, HV channels)
• S-3 classification (R, G, B channels)
• binary validity mask
• S-1 preview image of HH channel
The latter S-1 preview of the HH channel is saturation-

adapted for better useability during the data labeling process,
allowing the separation of ice classes by visual inspection.
This channel is only used for training and not for inherence.
One stack of files is generated for each S-1/S-3 scene pair.

C. CNN classification

The classification is conducted using a Convolutional Neural
Network (CNN) using the previously described 6 channels (3
channels optical, 2 channels SAR, mask layer) as input data.
A similar setup and method of classification was introduced
before for SAR-only sea ice classification [2], more details on
the classification algorithm are presented therein. The outcome
is an image classified into six sea ice classes

• Open leads / water (smooth)
• Open leads / water (rough)
• New ice
• First Year ice
• Multi-Year ice
• Rough ice

plus an additional no-data entry used for areas with clouds
(S-3 image) or geometrically not covered by both sensors.

III. PRELIMINARY RESULTS

The results presented in this section are derived from
an early, limited training data sample of 12 data stacks as
described in Section II-B. Figure 1 shows an exemplary set
of input data (SAR, SLSTR) and a comparison of the classi-
fication results. The SAR scene in panel (a) is shown almost
in full, only a small corner was removed during cutting. It is
located at the boundary of the SLSTR scene and, hence, does
not overlap fully. Panel (b) shows the SLSTR classification,
here variations of red colors show sea ice with different ages of
snow cover (darker: older, brighter: younger), while the green
and green-brown tones show open water with different surface
temperature (green: warmer, green-brown: colder, ready to
freeze). Clouds are shown in different shades of grey, seen

here at the right side of the panel. For a full description of
the SLSTR classification and its colors, the reader is referred
to [1]. Only a small part of the SLSTR scene is used since
it was cut to the extends of the SAR scene. A SAR-only
classification is shown in panel (c), using only the SAR data
for training and inherence but otherwise identical to the fused
classification. This does not correctly classify the bright open
water sections in the lower right of the image. In comparison,
the fused classification shown in panel (d) classifies most
of these areas correctly as open water. Note that for this
comparison, the validity mask derived from SAR and SLSTR
(panels (a) and (b)) was applied to both classifications shown
(panels (c) and (d)), visible by black borders and the cloud
cutouts on the right side. In operational use, the SAR-only
classification would not need to such a mask, it would only
be applied to the fused classfication.

IV. CONCLUSIONS AND OUTLOOK

The presented preliminary results show that the fused sea ice
classification from SAR and optical images can improve the
results especially in the task of open water and lead detection.
The inclusion of more training data samples and an extended
comparison of results will allow more detailed findings in the
future.

Automated satellite-based sea ice information services can
benefit from using and combining both sources of data. It was
demonstrated here already with the preliminary results that
fused information can provide a better accuracy of sea ice
class determination and thereby improve the safety of ships
sailing through ice-infested waters.

The presented classification is to become part of a near-real
time sea ice information generation and delivery chain. The
high coverage and acquisition frequency of the SLSTR scenes
results in regularly possible fused classifications, as long as
there is no cloud cover blocking the acquisitions. Nevertheless,
also the individual classifications from SAR and SLSTR are
made available to the end users due to their much higher
availability, as the fused classification is only available where
both sensors have acquired spatially overlapping data within
a time interval of several hours.
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Fig. 1. Example data stack and classification results. (a) Sentinel-1 acquisition (HH, HV), (b) SLSTR classification (RGB); contains modified Copernicus
Sentinel data (2020) (c) SAR classification using only Sentinel-1 data, (d) fused classification using SAR data and SLSTR classification. The open water areas
in the lower right part of the figure are identified more correctly by the fused classification.



Copernicus Marine Service SITAC SAR-Based Baltic Sea Ice Products

Finnish Meteorological Institute (FMI) is providing automated sea ice products as part of the 
Copernicus Marine Service (CMS, part of the European Commission Copernicus Programme)  sea 
ice thematic assembly center (SITAC) coordinated by MET Norway. The spatial cover of the 
products is the whole Baltic Sea and a typical temporal coverage is 1-3 days, depending on the 
availablility of SAR imagery. In the presentation an overview of the automated FMI SAR-based 
Baltic Sea ice products, their processing chain and their estimated quality will be presented, 
including examples of the products. Also plans for improvements and future new products will be 
discussed. The current products estimate three essential sea ice parameters: sea ice thickness (SIT), 
sea ice concentration (SIC) and sea ice drift (SID). During each Baltic Sea ice season, lasting 
approximately from the beginning of December until late May hundreds of SAR-based sea ice 
products are delivered to CMS by FMI. In Figure 1 the monthly amounts of delivered products 
grouped by product category for the season 2021-2023 are shown.

Figure 1. FMI CMS SITAC Baltic Sea ice products during the season 2021-2022 by category. The 
IC SIC and IC SIT are based on the daily ice charts made by the ice analysts at FMI/SMHI, the 
other products are automated and based mainly on SAR data.

The data quality is evaluated after each season and the bias, L1 difference (L1D) and root-mean-
square difference (RMSD) for the estimates with respect to reference data sets are provided.

Sea ice Thickness (SIT)

SIT is currently based on SAR imagery supported by background information of the previous day 
ice chart. From SAR imagery only qualitative SIT information can be derived. For this reason 
quantitative background information of SIT is required. The current operational algorithm 
(Karvonen et al., 2003) uses ice chart ice thickness as its background information. It has also been 
shown that the background information can be produced by an ice model (Karvonen et al. 2008). 
The operational SIT algorithm was developed for  C-band HH polarized data and it is applied to 
Sentinel-1 extra wide swath (EW) GRDM mode HH/HV-polarized data and to Radarsat-2 wide 
swath mode (WSM)  HH/HV data. A slightly modified SIT algorithm is applied to Sentinel-1 IW 
mode VV/VH polarized data. The SIT products are given in 500m resolution and provided to the 



CMS service in near-real-time (NRT), CMS time requirement being four hours from the SAR 
acquisition. In addition to the SIT grids, corresponding to each SAR image, a daily SIT mosaic is 
provided. In the daily SIT mosaic the most recent SIT information is overlaid over the older 
information and each grid point then contains the most recent SIT information available at the 
moment of the mosaic generation.

The reference data in evaluation of the SIT estimates are SIT measurements made by the Finnish 
and Swedish ice breakers. In the 2021-2022 evaluation the bias for the EW/WSM data was -0.7 cm 
(slight underestimation), L1D 8.5 cm and RMSD 10.2 cm. For the IW mode data the corresponding 
measures were 3.2 cm, 11.2 cm and 15.3 cm, indicating that SIT estimation using VV/VH data has 
slightly worse estimation accuracy than HH/HV data. The SIT estimation accuracy during 2021-
2022 was similar as in the previous seasonal evaluations.

Sea Ice Concentration (SIC)

SIC is the fraction of sea ice within an area, which can be a grid point area or a segment defined by 
SAR segmentation or polygon drawn by hand. In the FMI SAR based products the reference areas 
are SAR segments produced by a segmentation algorithm. The algorithm provides SIC in percents, 
i.e. 0 % represents all open water and 100% all sea ice over the reference area. Baltic Sea SIC is 
provided daily in the morning after the Radarsat-2 and Sentinel-1 morning passes over the Baltic 
Sea. The product is a daily mosaic and generated from single image SIC grids in the same manner 
as the SIT mosaic. SIC is provided in 500m resolution. The SIC algorithm currently uses C-band 
HH(HV-polarized SAR data from Sentinel-1 and Radarsat-2 an additionally also microwave 
radiometer data from AMSR2. The algorithm is based on a multilayer perceptron (MLP) neural 
network combining texture measure inputs based on the SAR data and polarization and gradient 
ratios based on the AMSR2 brightness temperatures of different frequency channels. The algorithm 
is described in detail in (Karvonen, 2017).

In evaluation of the SIC data, the FMI ice chart SIC and 3.125 km resolution ASI algorithm (Spreen
et al. 2008) SIC, also based on AMSR2 data, are used as reference SIT data sets. For the season 
2021-2022 data the bias, L1D and RMSD were -3.7 (underestimation), 10.4 and 26.2 percentage 
points, respectively. The corresponding values when compared to ice chart SIC were -1.0, 7.0 and 
22.3 percentage points. Also the 2021-2022 SIC estimation accuracy has remained similar as during
the previous seasons.

Sea Ice Drift (SID)

SID is estimated based on matching two SAR images acquired at different time instants over the 
same area, i.e. based on multitemporal SAR analysis. Sentinel-1 EW mode and Radarsat-2 SCW 
data are currently used in the SID estimation. Because during longer time periods sea ice may 
deform too much for reliable matching of the multitemporal SAR data, we restrict the time 
difference between the SAR images to be less than three days. Baltic Sea SID was for a long time 
estimated using a two-resolution phase correlation approach (Karvonen 2012). However, since 2020
a new algorithm was established. The new algorithm also operates in two resolutions, first a coarse 
resolution pattern matching by the ORB algorithm (Rublee et al. 2011) is performed and the 
resulting coarse resolution SID is then refined in fine resolution by applying Lucas-Kanade optical 
flow (Lucas and Kanade 1981). Optical flow has the capability of estimating the movement from an
image to another with a sub-pixel resolution. SID estimates are evaluated using ice drifter buoys 
deployed almost every winter. The evaluation is performed separately for short drift and larger drift.
For larger drift both direction and magnitude are evaluated, for short drift only magnitude. In 
general, the estimated drift and buoy drift correspond to each other quite well. However, there exist 



some outliers that typically give short SID estimates for some significantly longer buoy motions. It 
seems that these cases occur near the boundary of static and drift ice.

Product development

We are continually developing the products  and try to involve new SAR data in the production 
chain. Currently the integration or Radarsat Constellation Mission (RCM) HH/HV C-band SAR 
data is under construction.  The RCM rdata reireval and preprocessing have already been 
implemented but RCM data are not used for the products yet. Also X-band SIT algorithm utilizing 
X-band HH-polarized SAR data from TerraSAR-X, Cosmo-SkyMED and PAZ is currently in 
operational test phase. We are also studying good ways to estimate the degree of ice deformation 
and identifying single large pressure ridges based on SAR imagery. We expect that this work will 
later result into a SAR degree of deformation classification product to be included in the FMI CMS 
SITAC product portfolio. To improve estimation accuracy we have plans to utilize convolutional 
neural netrorks (CNN) in SIC estimation and possibly for other sea ice parameters as well. We have 
already successfully applied CNN to Sentinel-1 SAR data for SIC estimation (Karvonen 2022) and 
integrating AMSR2 microwave radiometer data in the CNN model is well under construction.
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Abstract
Operational activities and environmental studies in the Arctic both require robust and reliable mapping of sea

ice conditions. Because of its 24/7 imaging capability, synthetic aperture radar (SAR) is the main data source for
operational ice charting in national ice services worldwide. At present, the daily distributed ice charts are largely
produced manually by visual interpretation of the SAR imagery. The most commonly used frequency is C-band, and
data is available for example through the Sentinel-1 or Radarsat-2 satellites. Future missions, such as for example
ROSE-L or Sentinel-1 NG, are expected to further increase the total amount of available SAR images and will in
addition provide data at different frequencies, in particular L-band, for operational monitoring. The huge amount of
data will require (semi-)automated analysis, and studies are needed in order to determine the ideal configuration of
future satellites missions. Here, we use a set of 161 aligned image pairs acquired at C- and L-band to investigate the
benefits of combining both frequencies for multi-frequency classification and segmentation of sea ice types. The image
pairs were acquired over three different test sites, located in Fram Strait, Lincoln Sea, and Belgica Bank. Sea ice drift
between image acquisitions is compensated, using an algorithm developed at Chalmers University of Technology, such
that we can stack the C- and L-band data pixel-by-pixel. We then perform supervised classification and unsupervised
segmentation of the image pairs, using both single-frequency (C- and L-band as stand-alone) and dual-frequency
approaches. We evaluate the classification results in terms of classification accuracy, and the segmentation results in
terms of how many statistically separable clusters are found in each data set. Our results presented here clearly show
the benefits of combining the complementary information from both frequencies, in particular for the classification of
young ice, open water, and newly formed ice in lead areas.

I. Introduction
Monitoring and continuous mapping of the Arctic sea ice is essential to support marine traffic and navigation in the

Arctic and to assess the state of the sea ice cover for environmental and climate studies. Hence, daily sea ice charts
are provided by national ice services around the world. Because of its independence of sunlight and cloud conditions,
synthetic aperture radar (SAR) is the main data source for operational ice charting. Production of the ice charts is
at present done manually via visual interpretation of the imagery by expert ice analysts; a time-consuming process
that depends on the training and experience of the individual analyst. Automation or semi-automation of the ice
chart production (”computer-assisted ice charting”) is thus a desirable goal. Furthermore, the operational workflow in
many ice services is predominantly based on imagery acquired at C-band, even though it has been shown that other
frequencies, such as for example L-band, can offer valuable complementary information [1]. This focus on C-band is
mostly caused by the fact that L-band data is not yet routinely available for operational purposes. However, by the
end of this decade, ESA’s upcoming ROSE-L mission [2] will consistently provide L-band data which can be exploited
for ice charting.

The work presented here is part of the ESA project Synergistic Use of L- and C-Band SAR Satellites for Sea Ice
Monitoring (LC-ICE). In this study, we investigated the benefits of combining C- and L-band SAR imagery in a dual-
frequency approach for automated mapping of sea ice types. This type of analysis requires perfectly aligned SAR data
from both frequencies; the data set that we used is introduced in Section II. In Section III we briefly describe the
algorithms and the layout of our experiment. We summarize and discuss the main results in Section IV.

II. Data Set
Multi-frequency classification and segmentation of sea ice imagery requires spatially overlapping image pairs at C-

and L-band, acquired close in time. For the LC-ICE project, such image pairs were collected over different test sites in
the Arctic. Here, we use data from the Belgica Bank, Fram Strait, and Lincoln Sea. The C-band images are acquired by
Sentinel-1 (S1) and the L-band data by ALOS-2 PALSAR, respectively. All S1 data used in this study are in extra-wide
swath (EW) mode. We use the ground range detected format at medium resolution (GRDM), which at present is the
most commonly used S1 data format in operational sea ice charting. Our ALOS-2 data is available in both wide beam
(WB) and fine beam (FB) mode. Specifications of the sensor acquisition modes used in this study are listed in Table 1.
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TABLE I
Sensor acquisition modes used in this study

S1 EW GRDM ALOS-2 WB ALOS-2 FB
swath width (km) 410 350 70
pixel spacing (m) 40x40 25x25 6.25x6.25

looks ENL: 10.7 5(r)x3(a) 2
polarizations HH, HV HH, HV HH, HV

For a joint, multi-frequency analysis, the individual images in each image pair must be perfectly aligned, so that they
can be stacked to a multi-dimensional data cube. Here, we use a set of 161 aligned image pairs, for which the sea ice
drift during the time interval between the C- and L-band acquisition was compensated using an algorithm developed
at Chalmers University of Technology [3]. The aligned image pairs are calibrated, noise-corrected, and geocoded; the
backscatter intensities are converted to decibel (dB).

III. Method
A. Selection of areas of interest within image pairs

We have visually inspected all image pairs to ensure correct alignment and to check for undesired alignment artifacts
in the imagery. We have then selected an area of interest (AOI) within each pair that is suitable for the study of
multi-frequency classification. The main goal of the AOI selection is to choose areas that are as large as possible, but
small enough to:

• avoid too wide IA range
• avoid visible swath boundaries and influence of sensor noise
• exclude areas with mis-alignment or alignment artifacts

B. Classification and segmentation
We apply both supervised classification and unsupervised segmentation on the selected AOIs, using algorithms

developed by Lohse et al. (2020) [4] and Doulgeris (2015) [5], respectively. Both algorithms are based on well-established
statistical methods that use multi-variate probability density functions and Bayesian decision rules.

The classification algorithm assigns each image pixel to a set of class labels that are defined based on training data.
We evaluate its performance in terms of classification accuracy (CA), which is estimated from a set of validation data.
Regions of interest (ROIs) of different ice types for training and validation are selected manually based on visual
interpretation of the combined C-/L-band image pairs.

The segmentation algorithm automatically determines the number of clusters based on the statistics of the input
data. As we gradually increase the sensitivity of the algorithm, the number of resulting clusters increases. We then use
the Jeffries-Matusita (JM) distance to asses the separability of the clusters. Finally thresholding the JM distance allows
us to find the optimal number of clusters and thus quantify the statistically separable information in the imagery in
an unsupervised approach.

We perform both classification and segmentation using single-frequency (C-band and L-band as stand-alone) and
dual-frequency data as input, which allows us to assess the added value of combining both frequencies.

IV. Results and Discussion
Our results clearly show the benefit of combining C- and L-band data for automated separation of sea ice types.

With the segmentation approach, the combination of C- and L-band on average separates 2.4 more clusters than C-
band alone, and 1.0 more clusters than L-band alone. For the classification, we find that the dual-frequency approach
achieves the highest CA in 98.1 % of all cases. In some cases, in particular for regions of deformed ice, the L-band
stand-alone classification performs almost or equally as well as the dual-frequency classification. However, especially
in lead areas with open water, newly formed ice, and young ice, the combination of C- and L-band is usually superior
to either of the single-frequency approaches.

An example AOI with selected ice type ROIs and a comparison of classification results is shown in Figure 1. It
demonstrates the superiority of L-band for separating level and deformed ice compared to C-band; the good separation
of these ice types at L-band is retained in the multi-frequency scenario. Furthermore, a lead stretching from east to
west in the lower part of the image is generally identified in the stand-alone classification results at both C-band and
L-band. However, at L-band, almost the entire lead is classified as Young Ice, while at C-band the lead is split up into
OW/New Ice, Young Ice, and Level Ice. Only the combination of both frequencies manages to capture the lead as a
mixture of OW/New Ice and Young Ice, with small parts in the northern area being open, and the majority of the lead
being re-frozen. At the conference, we will present further examples with corresponding CAs and discuss differences
between C- and L-band.
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Fig. 1. Classification example from Fram Strait test site, 2019/12/10, acquisition time difference ∆t = 1.7hours. C- and L-band false-color
RGB images (R-HV, G-HH, B-HH) with training and validation ROIs for different ice types are shown at the top, single- and multi-frequency
classification results below, including close-ups of the areas marked by red and blue squares.
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The greatest threat to the Arctic is climate change. Nowhere else is the earth warming up faster than 
here: Within the last 100 years, the average annual temperature here has risen by five degrees Celsius. 
Permafrost is thawing. Sea ice is disappearing, more precisely; Multiyear ice has been replaced by 
seasonal ice, and ice-covered areas have been partially replaced by open water [1]. Therefore, there is 
a high demand to monitor the Arctic and its sea ice, not only by extend but also by age.  

Synthetic Aperture Radar (SAR) satellites are able to observe small- and large-scale structures in the 
sea ice in any weather, through clouds and darkness, due to their active Radar antenna. This makes 
them well suited to monitor changings in remote areas of the Arctic. However, to analyze large 
amounts of data sufficiently, automatic algorithms for classifying the sea ice in terms of their stages of 
development are requested. The development of these algorithms has long been a focus of research 
ever since the advent of satellite borne SAR [2].  

Since then, an abundance of approaches for SAR based sea ice classification have been developed, 
summarized comprehensively in [3]. The most promising approaches have been transferred to 
operational services. Nevertheless, obtaining accurate classifications year-round is still a challenge. 
Different ice classes can show similar radar backscatter responses, which limits the performance of sea 
ice classification. Seasonally, the radar backscatter signal can be affected by precipitations e.g. wet 
snow obscures information about underlying ice types [4].    

In order to stabilize automated classification, we show here the first tests on multitemporal sea ice 
classification. That is, we use collocated, sequential SAR acquisitions taken over a region of interest, 
and – as sea ice is driven by winds and ocean currents – run our sea ice drift retrieval algorithm, which 
we presented in [5, 6] and improvements of it, for capturing fine-scale sea ice motions especially at 
the borders of different ice sheets in [7]. Using the retrieved drift vector information, we are able to 
track drifting pieces of ice (such as an ice floe) from one SAR acquisition to the next, and collect more 
SAR measurements about the floe. The collected SAR measurements are then used jointly to classify 
the sea ice.  

In the study presented here, we only use pairs of SAR images. Larger time series will be considered in 
future work. We present preliminary test results with Sentinel-1 (S1) data taken over the Arctic Ocean 
offshore close to Cape Morris Jesup between the Lincoln and Wandel Seas during December 2021, 
when the ocean showed a closed cover of drift ice (according to dmi ice charts), which most probably 
consisted of mainly multiyear ice [8-10] and some small leads of open water. East of Cape Morris Jesup, 
the concentration of multiyear ice may have decreased.   

 

 



Sea ice classification 

The core of the sea ice classification algorithm is an adjusted UNET++ convolutional neural network 
architecture described by [11]. In our specific implementation, the classification is done tile-wise, i.e. 
a S1 acquisition is divided into tiles, classified, and then the results are joined back to generate an ice 
map as shown in [12]. We differentiate six sea ice types: multiyear ice (MYI), first-year ice (FYI), young 
ice (YI), open leads (split in so-called dark leads (DL) and bright leads (BL)) and rough ice (RI). For each 
ice type (and each pixel) a discrete probability distribution over ice type is output. In general, the ice 
type with the highest probability is then selected for the final ice map. 

As an example, Fig. 1 shows sea ice classifications (most likely ice type) of two S1 acquisitions taken on 
6th Dec. 2021 11:25 UTC and 7th Dec. 2021 17:01 UTC over the study area. Although the sea ice has not 
changed significantly in the two days according to visual inspection of the radar backscatter signal, 
both classification results differ a lot. The sea ice classification for the 6th Dec. shows young ice in large 
areas. The result for the 7th Dec. appears to better reflect the real sea ice situation offshore.  

   

Fig. 1: Examples of sea ice classification individually performed on two subsequent Sentinel-1 (S1) acquisitions taken on 6th 
Dec. 2021 11:25 UTC (left) and 7th Dec. 2021 17:01 UTC (right) over the Arctic Ocean offshore close to Cape Morris Jesup, 
which is mainly covered with MYI. Even though sea ice has not changed significantly, the classifications differs a lot.  

 
Fusion 

We fuse the discrete probability distributions of the subsequent acquisitions considering the 
underlying drift. Fig. 2 shows the sea ice drift vector field used for the drift compensation. In the given 
case, the sea ice moved quite homogeneously eastwards with up to 500 m/h. 

Fig. 3 is generated out of the two individual classifications, more precisely, the most likely class from 
both probability distributions is selected after drift compensation. The unlikely presence of “young ice” 
over Lincoln Sea on 6th Dec. gets automatically corrected in most parts as there is a higher probability 
of "multi-year ice" the following day. This example showcases the strength of multitemporal sea ice 
classification. It provides the basis to overcome misclassifications and overall to generate sea ice 
classifications with increased reliability.  

 

Sea ice class 
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         YI 

         DL 

         BL 

         RI 



 

  

Fig. 2: Sea ice drift estimated from the two S1 acquisitions used for 
the sea ice classifications in Fig. 1. Grey scales show S1 HH data from 
7th Dec. 2021. Overlaid colours represent retrieved sea ice drift 
velocity in 500 m resolution and arrows illustrate sea ice drift vectors 
(10 km spacing).  
 

Fig. 3: Sea ice classification based on the two S1 
acquisitions used for the sea ice classifications in Fig. 1.  
The unlikely presence of “young ice” over Lincoln Sea 
on 6th Dec. gets corrected in most parts. Colour legend 
see Fig. 1 top right. 
 

Discussion 

For fusing probabilities, various approaches can be applied, namely Kalman filter, Bayesian networks, 
and Dempster-Shafer. In ongoing work, we consider Kalman filtering and incorporate a priori 
knowledge to forbid impossible class changes e.g. from “young ice” to “multiyear ice” and vice versa.    
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The impact of input features in deep learning based
sea ice mapping

Qiang Wang, Malin Johansson, Johannes Lohse, Anthony P. Doulgeris and Torbjørn Eltoft

Abstract
Here we present a semantic based segmentation model for separating sea ice from open water in Sentinel-1 imagery.

The study utilizes Sentinel-1 intensity imagery, together with sea surface temperature (SST) obtained from Sentinel-
3 data, to train a UNET based semantic segmentation model for separating sea ice from open water. The imagery
were all acquired over an area between Greenland and Svalbard, and contains images from all seasons. Two network
configurations were studied: A ”baseline model”, which used the HH, HV intensities and the incident angle, and
an ”advanced model”, which in addition included the SST as inputs. We compared the models’ performances on
independent Sentinel-1 scenes acquired over different seasons. The results indicate that both the baseline and the
advanced models are able to separate the open water and sea ice classes well. Improvements were identified in the
delineation of the sea ice edge for the advanced model.

I. Introduction
Monitoring sea ice and its changes in extent and concentration has drawn more attention with the ongoing global

warming [1]. Wunderling et al [1] indicated that the Arctic Ocean might become ice-free during summer within the
21st century. Meanwhile, Post et al [2] reported that sea ice loss could influence terrestrial productivity and diversity,
species interactions, etc. Hence, a better understanding of temporal and spatial changes in sea ice is important for
improving climate modelling, understanding the Arctic ecology, as well as supporting safe marine navigation and
offshore operations.

Ship-based expeditions are a good way to observe sea ice conditions with high accuracy, though are expensive and
time consuming and hence not feasible to be carried out regularly over large spatial scales. Remote sensing can provide
data for regular monitoring. For example, Spreen et al [3] developed a sea ice concentration algorithm called ARTIST
(ASI) using data from Advanced Microwave Scanning Radiometer (AMSR-E) and Advanced Microwave Scanning
Radiometer 2 (AMSR2). The maps are openly available, regularly updated and has a km resolution. However, such
relatively coarse spatial resolution might not be sufficient for accurate marine navigation. Synthetic aperture radar
(SAR) sensors, e.g. Sentinel-1, on the other hand, can provide measurements at much finer spatial resolution on the
order of tens of meters resolution.

Park et al [4] developed a machine learning sea ice type classifier by using the texture features from Sentinel-
1 and retrieved three generalized ice types (open water, mixed first-year ice, old ice) with an overall accuracy of
87% (winter)and 67% (summer). Wang and Li et al [5] developed an approach for deriving a high-resolution sea ice
product for the Arctic Ocean by employing an integrated stacking model to combine multiple UNET [6] classifiers with
diverse specializations with Sentinel-1 imagery. It obtained an overall accuracy of 96.10% by using the HV-polarization,
polarization ratio and polarization difference as input features.

Here we propose in this paper two simplified UNET configurations for sea ice and open water separation. One model,
denoted the ”baseline model”, uses the HH, HV intensities and the incident angle (IA) as input features, whereas the
second model, denoted the ”advanced model”, also includes sea surface temperature (SST) as input. The networks were
trained using Sentinel-1 (baseline), and SST from Sentinel-3 (advanced), and their performances were subsequently
validated with regard to accuracy and robustness.

II. Data and methodology
A. Data

We utilized Sentinel-1 Ground Range Detected (GRD) in the Extra Wide (EW) swath mode over the area between
Greenland and Svalbard. Sentinel-1A + 1B offers a 6 day exact repeat cycle. At medium resolution, the GRD product is
provided at a spatial resolution of 40 × 40 m and each scene covers roughly 10,000 × 10,000 pixels. In total, 32 Sentinel-
1 images acquired during all the months of 2021 were used to generate the training samples for our experiment. Scenes
in both ascending and descending mode were used in order to prevent biased model fitting. Daily SST was obtained
from the Copernicus climate change service with the spatial resolution of 0.05° × 0.05°, and were re-sampled to match
the spatial resolution of the Sentinel-1 images.
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B. Methodology
We trained two deep learning models for segmenting sea ice and water in the Arctic region. Back-scatter coefficients

from the HH and HV polarization, IA, and SST are used as input features. A baseline model was trained using only
the SAR features (HH, HV, IA), whereas the advanced model also included the SST.

The original 4-layer UNET was used as a baseline, and we thereafter re-designed the network architecture using
a trade-off between computation cost and training accuracy. Finally, a three-layer down-sampling and up-sampling
network was determined. The detailed architecture of the model is shown in Fig 1. For the configuration of the model
(advanced UNET) training procedure a Stochastic gradient descent (SGD) optimization method was used. The learning
rate was set as 0.001 with the moment of 0.9. Focal loss [7] is used to control the training process for compensating
the class imbalance in the training data.

Fig. 1. Architecture of the simplified UNET

III. Results
We validated the model performance by computing the inference of the advanced model and the baseline model for

four independent validation images covering different seasons, whose scene IDs are listed in Table I. The corresponding
inference by baseline model and advanced model are shown in Fig 2.

TABLE I
Sentinel-1 scene IDs for the images used for validation

scene scene ID
(a) S1A_EW_GRDM_1SDH_20220308T075349_20220308T075453_042227_050850_B0B3
(b) S1A_EW_GRDM_1SDH_20220502T074631_20220502T074731_043029_05233F_CC06
(c) S1A_EW_GRDM_1SDH_20220706T075459_20220706T075559_043977_053FDB_3D18
(d) S1A_EW_GRDM_1SDH_20221122T074535_20221122T074639_046004_05816B_9FC9

It can be seen from Fig. 2 that the water ice boundary is well delineated by both the baseline and the advanced
model. However, the advanced model can identify the newly formed ice better than the baseline model (see areas
marked by red rectangles). Meanwhile, both models may mis-classify the smooth ice as water, shown in the green
rectangle in Fig. 2c. It should be denoted that this mis-classification occurred during the summer season, where wet
snow or melt-ponds on the sea ice surface may render classification difficult.

IV. Conclusion
We have trained two simplified UNET models to segment ice and water, where the baseline model used the HH, HV

and IA from Sentinel-1 imagery as input features and the advanced model used SST derived Sentinel-3 in addition to
HH, HV and IA from Sentinel-1 observation as input features. Results indicate that by including the SST, the advanced
model can delineate the water ice boundary well and newly formed ice inclusion in the sea ice class is improved. This
can serve as a baseline model for segmenting water and ice over the Arctic Ocean. In the future, a better training
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Fig. 2. From left to right: HH (in dB), HV (in dB), baseline model inference, and advanced model inference for the four S1 example images.
The a-d letters corresponds to the Scene IDs in Tab. I. Water is blue and ice is white. Regions of particular interest are highlighted by
colored rectangles.

data set should be further developed (wet ice in the summer, windy water, etc) to improve the model generalization.
Moreover, high resolution SST data can be further explored to replace the existing SST for achieving a high accuracy
sea ice vs. open water segmentation model.
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Abstract

In this paper, we give an overview of the CIRFA-2022 Cruise with RV Kronprins Haakon to the north-
eastern coast of Greenland in the period April 22nd to May 9th, 2022. The cruise was motivated by a need
to validate and assess remote sensing products resulting from the research in the ”Centre for Integrated Re-
mote Sensing for Arctic Operations (CIRFA)”. CIRFA’s research spans a wide spectrum of activities which
together aim to develop new remote sensing (RS) algorithms, methods and technologies, that through in-
tegration of multi-sensor data with model predictions and surface observations enable improved detection,
characterisation, and monitoring of the geophysical environment of the Arctic. In this regard, remote sensing
of sea ice and icebergs is of particular interest, and a significant amount of resources has been devoted to
analysis and interpretation of synthetic aperture radar (SAR) data for sea ice classification and iceberg detec-
tion. Additionally, CIRFA has contributed to advances in numerical modelling through the development of
the Barents-2.5 ocean circulation and sea ice model for use in operational ocean forecasting. The CIRFA-
2022 Cruise was carried out in collaboration between CIRFA and the European Space Agency (ESA), and
was financially supported by The UiT the Arctic University of Norway, ESA, and CIRFA partners.

1. WHAT WAS DONE

The cruise track followed a profile at 78.5° N, moving westwards from Svalbard towards Belgica Bank which
is located between 78 – 80°N and 12 – 16°W in the western Fram Strait and offshore North East Greenland
Figure 1. A major focus of the CIRFA-2022 Cruise was on linking field observations of sea ice properties
and icebergs with the analysis of satellite SAR images in a region of highly variable ice cover characteristics
close to the Northeast coast of Greenland. Ground-based measurements of small-scale ice surface and volume

Figure 1. Map of Fram Strait showing the ship track along with markings of the various stations overlaid on a Sentinel-1
scene. (Made by Yannick Kern (Norwegian Polar Institute)).



parameters, as well as of snow properties, were carried out using a suite of different instruments. Large-scale
ice cover characteristics and iceberg occurrences were monitored by means of drone and ship-based sensors.
The ground truth measurements conducted included:

• Physical properties of sea ice, i.e. ice thickness, salinity, temperature, volume structure and inhomo-
geneities, surface roughness (mm-cm scale), frost flower properties

• Physical properties of snow. Layering, grain size, salinity, wetness, presence of snow ice or superim-
posed ice were measured in snow-pits. Snow thickness and snow layer profiles were also measured on
transects by a snow micropenetrometer and by a snow radar mounted on a drone.

• Layering in snow and ice was also investigated by a ground-based tomographic radar.
• Large scale sea ice characteristics like ice type, floe size distribution, occurrence of open water leads

and icebergs were imaged in optical and IR spectral bands by drones.
• Sea ice and ocean drift patterns were monitored by a network of GPS-trackers on ice floes and in the

ocean.
• Local hydrography properties were recorded as CTD-profiles at predefined stations.
• Local current conditions were measurred by a network of Lagrangian current drifters.
• Meteorological conditions such as air temperature, wind data, humidity, precipitation, and visibility

were recorded.
Coordinated with the on-ice measurements, radar images from a suite of satellites were collected. These
included high-resolution, full-polarimetric scenes from RADARSAT-2 and ALOS-2, and ScanSAR scenes
from RADARSAT-2, ALOS-2, TerraSAR-X, and COSMO-SkyMed, in addition to all available scenes from
the Sentinel satellites.

2. PRELIMINARY RESULTS

2.1. Sea Ice Classification

CIRFA has investigated several approaches for sea ice classification from SAR data. During the CIRFA-2022
Cruise the performances of some of these were assessed against observations made in the field. Figure 2
shows the result of applying a supervised statistical classification algorithm on a Sentinel-1 scene. The algo-
rithm is trained on a data set for multiple sea ice types, which is based on the visual analysis and interpretation
of overlapping Sentinel-1 SAR and optical images from Sentinel-2 and Landsat-8. The colours in the right
panel of Figure 2 represent different ice types and open water. Visual comparison against the drone image
(left) indicates good agreement between the classified and observed sea ice classes.

Figure 2. Example of sea ice classification. Left: Drone photo, with the ship in the image (Made by Maritime Robotics).
Right: Classification result based on a section of a Sentinel-1 scene. Dark Green represents Deformed Ice. Light Green
represents Level Ice. Purple represents Young Ice. Blue represents Open Water. The red dot indicates the ship position.

2.2. Polarimetric analysis

CIRFA has been able to acquire a time series of 11 RADARSAT-2 scenes over fast ice in the Belgica Bank
in the period April 11th to June 18th. The scenes cover a site where the CIRFA team had a field work station
on April 27th-29th. The SAR images were acquired at incidence angles ranging from 30 to 44 degrees, and



display several types of snow-covered sea ice areas, including levelled first-year ice, deformed multi-year ice,
and thin young ice in refrozen leads. Figure 3 illustrates how the changes in the meteorological conditions are
reflected in the Pauli signatures of the ice floes denoted A, B, and C in the scenes from April 11th (left) , May
4th (middle), and June 18th (right). Ice area C, which is thin lead ice, had broken off and disappeared on June
18th. The time series allows for a comprehensive study of the consistency and stability of the polarimetric
properties of sea ice with varying temperatures and meteorological conditions.

Figure 3. Pauli images of RS-2 images from April 11, May 4, and June 18.

2.3. Sea ice drift patterns from drifter network

As part of the CIRFA-2022 Cruise, a total of 20 drifters were manufactured in-house at UiT The Arctic Uni-
versity of Norway and consequently deployed in Fram Strait. Of the 20 drifters, 15 were deployed manually
on sea ice, while the remaining 5 were deployed on sea ice and icebergs by drones. Deploying a drifter by
a drone allows to set it out further away, at locations up to 3 km from the ship. The sea ice drifters sample
GPS positions every 30 minutes and perform a wave motion measurement every 3 hours for a duration of 20
minutes. The iceberg drifters collect a GPS position every 12 hours and do not perform wave measurements.
The wave motion measurements are collected in order to determine when a sea ice drifter transitions into an
ocean drifter, which occurs when the sea ice melts or breaks up. This ice-to-water transition moment can be
detected by analysing the wave spectra.

Drifter deployments were carried out at a range of different longitudes in Fram Strait, from 03° 4.532’ W
to 09°15.630’ W, thus covering sea ice drift from the marginal ice zone towards the fast-ice. For the sea ice
drifters that were deployed manually, auxiliary measurements of snow and ice properties were performed at
the deployment sites: ice thickness, snow depth stake measurements, salinity of snow-ice interface samples,
and snow-water equivalent. Figure 4 shows the trajectories of all drifters deployed during the CIRFA cruise.
Note that for the sea ice drifters these trajectories are showing both the sea ice drift and the ocean drift part.

Figure 4. Trajectories of drift tracks from north to southwest along the east coast of Greenland.

3. CONCLUSION

The CIRFA-2022 Cruise succeeded in collecting a large amount of ground-based measurements coincident
with satellite overflights. This data will be subject to thorough investigations in the months and years to come.
The proposed presentation will summarise the objectives, give an overview on the data sets, and present more
details on some results.
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EXTENDED ABSTRACT 

 

Sea ice in the Arctic, as an amplifier of global climate 
change, has undergone dramatic changes because of global 
warming. Arctic sea ice changes mainly include  continuous 
decreases in sea ice, thinning of multi-year ice thickness, and 
the conversion of multi-year ice to first-year ice, which 
makes first-year sea ice ever more complex, especially in 
summer. During the growth and development processes, sea 
ice possesses different radar scattering characteristics, which 
vary according to the various sea ice types, and according to 
its stage of development. From the Canadian Ice Service  
(www.canada.ca/en/environment-climate-change/services/ 
ice-forecasts-observations/latest-conditions/educational-
resources /sea/types-forms.html), sea ice can be considered 
in different ice types: new ice (NI), young ice (YI), first-year 
ice (FYI) and multi-year ice (MYI). NI is a general term for 
newly formed ice, which is composed of ice crystals and has 
no definite fixed form. YI is ice in the transitional stage 
between new ice and first-year ice with thickness of about 
10-30 cm. FYI is sea ice that grows for no more than one 
winter and develops from younger ice with 30 cm or more 
thickness. MYI is sea ice that has undergone at least one 
summer of melting. 

Accurate sea ice information can significantly improve 
Arctic sea ice predictions and global atmospheric 
environment forecasts. Thus, it is important to have detailed 
information of first year sea ice. Synthetic aperture radar 
(SAR) is an important tool for sea ice monitoring because of 
its low sensitivity to clouds, rain and fog, and its ability to 
achieve all-day, almost all-weather, high-resolution earth 
observations. Quad-pol SAR with the amplitude and phase 
information of the backscattered signal can be recorded for 
four transmit/receive polarizations (HH, HV, VH and VV) 
which contains polarization characteristics of sea ice which 
are closely related to the physical scattering mechanisms of 
the sea ice. The differences in the scattering mechanisms can 
be described by polarimetric parameters. There are many 
parameters that have been proposed for sea ice classification  
(Espeseth et al., 2017; Li et al., 2021; Liu et al., 2015). 

However, there are two facts that hinder fine-resolution 
sea ice classification. Firstly, sea ice is complex, 
unpredictable, highly connected with environmental factors, 
particularly FYI (Bi et al., 2020; Winski et al., 2021), and it 
is difficult to collect actual sea ice observations with large 
coverage and high resolution. Secondly, even though a large 
number of SAR characteristics have been used to classify 
sea ice, it remains unclear which parameters are the most 
effective. Determining the best SAR parameters for fine-
resolution sea ice categorization is quite challenging. 

In this study, our focus is to develop a methodology for 
fine-resolution sea ice classification and particularly to 
classify first-year ice. The types of sea ice in SAR images 
are calibrated using visible images as a significant source of 
actual sea ice data. The key point of this work is to 
determine optimal parameters, among the possible different 
parameters identified, using separability index (SI) methods. 
Based on the selected optimal parameters, we can 
distinguish among open water (OW), NI, YI and FYI types, 
using the support vector machine (SVM) machine learning 
method. The classification results are validated by manually 
interpreted ice maps derived from Landsat-8 data. 
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ABSTRACT

A recently proposed SAR image alignment framework based
on ice drift compensation is examined for applicability in
the marginal ice zone where ice analysis is complicated by
ice floe rotations, fast changing local ice concentration, local
wind variations, and changing wetness of the ice surface.
Here, we use L-band ALOS-2 and C-band Sentinel-1 images
that were acquired over the Greenland Sea in the summer
period of 2019. Preliminary results show that L-C SAR im-
age alignment is possible in the marginal ice zone during
melting conditions with a time span of a few hours and with
ice speeds of >10 cm/s. The main challenges and directions
of future work to improve the alignment performance in the
transitional zone between open sea and dense drift ice are
formulated.

Index Terms— Alignment, sea ice drift, marginal ice
zone, SAR, Arctic

1. INTRODUCTION

The marginal ice zone (MIZ) denotes the transition between
the open sea and dense drift ice or fast ice and is of large in-
terest for research on sea dynamics as it is characterized by
various features comprising ice edge dispersion/compacting,
formation of ice bands, intense air-sea interaction which pres-
ence of oceanic eddies [1]. Satellite data from synthetic aper-
ture radar (SAR) are extremely valuable for sea ice monitor-
ing including the MIZ. However, the automated retrieval of
ice movements in the MIZ from pairs of SAR images can
be complicated because of ice floe rotations, wind-induced
changes of the water surface roughness, and wetness of the
ice surface. The usage of SAR images acquired at different
frequencies is beneficial as it provides richer information for
monitoring and retrieval of sea ice parameters. Most often
the images at different frequencies are not acquired from the
same satellite but rather from different satellites observing the

same region at slightly different points in time. This poses
a problem for their joint analysis as ice drifts due to wind
and sea currents will transform the ice in-between the two
paired acquisitions. To collocate the SAR sea ice images, a
recently proposed SAR ice imagery alignment method based
on ice drift compensation [2] is used to assess the feasibility
of alignment in the marginal ice zone.

2. SAR IMAGES AND TEST SITE

We collected L-C image pairs from Level-1.5 Ground Range
Detected (GRD) data from ALOS-2 (Advanced Land Observ-
ing Satellite-2) and Sentinel-1A/B GRD Extra Wide Swath
Mode (EW) data taken over the ice edge area in the Green-
land Sea. Two different ALOS-2 data modes are used, namely
ScanSAR Nominal and Stripmap Fine. The backscattering
coefficient σ0 was computed and the data were projected onto
a Polar Stereographic grid with a pixel size of 100 m.

3. SAR ALIGNMENT METHOD AND QUALITY
ASSESSMENT

Alignment of SAR images acquired at L- and C-band was
demonstrated in [2]. This study examines the performance
of the alignment method in the marginal ice zone. An L-C
pair has been selected in the Greenland Sea area (10.8191◦W,
79.2014◦N) in the summer period (2019/06/22) with a time
gap between acquisitions of around 4 hours (Figure 1 A, B).

A SAR drift algorithm [3] is used to estimate the ice drift
for the overlapping parts of the SAR images, which provides
the ice displacement vectors on a regular grid with a step size
of 50 pixels, corresponding to 5 km.

The alignment is carried out by local piece-wise affine im-
age transforms on a triangular mesh obtained based on the ice
displacements. The alignment framework was demonstrated
with pairs of ALOS-2 and Sentinel-1 images, but can be used
for data at other frequencies and from other sensors.



For the alignment quality evaluation, we use the Struc-
tural Similarity Index (SSIM) [4] which is a similarity mea-
sure comprising brightness, contrast, and structural compo-
nents. Its values range from -1 to 1, with the latter indicating a
perfect alignment. For consistency in the assessment of align-
ment quality, we apply SSIM for the original L-band image L,
and image LFB which is obtained after forward transform TF

followed by backward transform TB : LFB = TB(TF (L)).
But it should be noted that we use the two-times transforma-
tion as some kind of proxy for assessing one-time transforma-
tion to exclude the influence of the signature difference.

Fig. 1. A - L-band ALOS-2 HH image from 2019/06/22
13:45:11; B - C-band Sentinel-1 HH image from 2019/06/22
17:40:12; C - aligned ALOS-2 image by ice drift compen-
sation. The derived ice displacement vectors are depicted in
green on the Sentinel-1 image (B).

4. RESULTS AND DISCUSSION

Ice drift retrieval in the marginal ice zone becomes more com-
plex compared to pack ice mainly due to two factors: (1) more
intense dynamics of ice floes including their rotations and (2)
the influence of open water patches that constrains the ice sig-
nature recognition. As the drift algorithm [3] handles the rota-
tional movement of ice, we obtained displacement vectors for
almost each grid point, which have been visually checked for
correctness. According to the drift algorithm output, the mean
ice speed in the period was 14.7 cm/s with a dominating drift
towards NE and N. Individual ice floes with a horizontal size
from a few hundred to tens of kilometers can be recognized
in Figure 1. A result of the alignment of the ALOS-2 image
to the Sentinel-1 image by ice drift compensation is shown in
Figure 1 C. Visually, it is seen that the aligned ALOS-2 image
has not been significantly distorted after alignment and com-
pared to the original image (Figure 1 A). This indicates the
correctness of the obtained drift vectors and successful trans-
formation by the alignment method.

To assess the quality of the alignment quantitatively, we
used the SSIM values. Here we assess the transformation
quality but not the differences caused by sea ice signature
changes at the different bands, therefore we applied the met-
ric for the original ALOS-2 image and its forward-backward
transformed version. Figure 2 shows that the SSIM values
close to 1 are prevailing across much of the aligned image,
while the lower values correspond to a relatively small frac-
tion of pixels.

The mean air temperatures over the area between 13:00
and 18:00 on 2019/06/22 were derived from the ERA5 re-
analysis dataset [5] and are depicted in Figure 2. According to
the data, the prevailing air temperature at 2 m over the entire
region was above 0◦C in previous days, and in the period be-
tween image acquisitions, hence we can expect melting con-
ditions.

5. CONCLUSIONS

In this case study, we assessed the applicability of the recently
proposed alignment framework for SAR sea ice imagery in
presence of granular ice covers consisting of relatively small,
thin ice floes, which are common in the marginal ice zone.
Such analysis is more challenging compared to pack ice due
to the complex nature of the MIZ as described above. Suc-
cessful alignment has been demonstrated for a pair of L-band
ALOS-2 and C-band Sentinel-1 images from 2019/06/22 ac-
quired over the Greenland Sea with a difference in acquisi-
tion time of 4 hours. The feasibility of alignment has been
examined visually by the presence of distortion as well as
quantitatively by the Structural Similarity Index. Both the
.visual assessment and the SSIM confirm the applicability
and efficiency of the alignment method based on the piece-
wise affine transform in summer conditions, rotational ice



movement, and locally varying ice concentrations. Despite
promising results, it has to be proven that the alignment can
be applied for time gaps longer than a few hours and under
different weather conditions. The ice drift algorithm used in
this study has demonstrated reliable performance for multi-
frequency SAR images over the marginal ice zone, but the
image alignment can also be assessed for other SAR drift al-
gorithms.
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Abstract
The polarization difference (VV-HH) for different sea ice types observed in L- and C-band SAR images during the

MOSAiC drift study is investigated here. The drift lasted from the freeze-up to the early melt season, ensuring that
the temperature dependency is also examined. PD has positive values for open water and new ice areas, i.e. HH > VV,
whereas the values turn negative for the young ice stage and stabilise around 0 for the thicker sea ice types. L-band
SAR PD values appeared to have a higher sensitivity to the melt onset compared to C-band SAR.

I. Introduction
In September 2019, the German research icebreaker R/V Polarstern started the drift across the Arctic Ocean as a

part of the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) drift experiment. During
the course of MOSAiC thousands of SAR images were acquired in different imaging mode and frequency supported by
various international space agencies and research organizations (e.g. CSA, JAXA, ESA, DLR, KARI, ASI, CONAE,
INTA). In this study we focus on SAR images from the ALOS-2 and RADARSAT-2 satellites acquired through joint
ESA-JAXA collaboration. Here we evaluate the effects of seasonal changes on C- and L-band backscatter in respect to
four different sea ice types, i.e., newly formed sea ice (NI), Young Ice (YI), Smooth Ice (SI) and Deformed Ice (DI), as
well as the stability of radar backscatter in different polarization, for polarimetric parameters acquired under different
environmental conditions and at different incidence angles.

Previous studies e.g., [1–3] have shown that L-band SAR can provide improved separability between different sea ice
types. The different wavelengths means e.g., different penetration depths and different sensitives to the onset of melting
e.g. [4]. In [2] L-band data was shown to provide easier separation between first year ice (FYI) and second/multi-year
ice (MYI) in the early and advanced melt season. Upcoming L-band missions such as NISAR, ALOS-4 and ROSE-L
will offer the advantages of fully polarimetric acquisitions along with higher ground coverage to achieve a optimal
scenario for L-band SAR based sea ice monitoring.

In this study we found that the polarization difference (PD) can be used to separate out younger sea ice types in both
C- and L-band SAR images, provides a complement to the co-polarization ratio that can primarily separate the newer
sea ice types, and PD provide good separability between high backscatter young ice and MYI. PD could also be used
as an indicator of early melt stages, due to the shift from stronger VV to stronger HH channel data in L-band SAR
images. The same trend could not be observed in the C-band images, and as such the two frequencies complemented
one another.

II. Data set
SAR data overlapping the drift of R/V Polarstern during the MOSAiC expedition from 1 October 2019 until 31

July 2020. The sea ice observed in the larger area around R/V Polarstern for the first floe is the main focus of this
study. R/V Polarstern drifted towards the polar hole (ca. above 86.6oN) around the end of 2019 and the beginning of
2020. Some sensor specifics are listed in Table I.

TABLE I
Specifics of satellite data used in this study. The values presented are average values for the different missions.

Mission Frequency Range x Azimuth Range x Azimuth IA range NESZ
resolution* spacing *

RADARSAT-2 C (5.41 GHz) 5.2 m x 7.6 m 4.7 m x 5.1 m 18 o–49 o -32.9db ±1.5dB
ALOS-2 L (1.2 GHz) 5.1 m x 4.3 m 2.9 m x 3.2 m 29 o–41 o -36.0 dB(HH), -46.0 dB (HV)
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III. Method
Here we analyse the polarimetric SAR information for four different sea ice types, NI, YI, SI and DI, and how they

vary with incidence angles, SAR frequencies and temperature. The NI was predominantly observed within leads and
the YI was predominantly the younger sea ice surrounding the MOSAiC floe at the start of the campaign. This YI
had on 14th October an average thickness of 30 cm.

The SAR images were calibrated so that the pixel values could be directly related to the radar backscatter coefficient
(σ0) values. The backscatter coefficients are derived from the mean intensity of the complex scattering coefficient S,
where ⟨·⟩ is averaging over a neighbourhood of N pixels. Here N is equal to 7x7 pixels. The polarization difference
(PD) was calculated as;

PD = ⟨|SV V |2⟩ − ⟨|SHH |2⟩. (1)

Note that PD is defined on a linear scale, and using PD the non-polarized component can be separated from the
polarized one in the analysed data, and is less sensitive to the closeness to the NESZ than many other polarimetric
features. A poor signal-to-noise ratio (SNR) was in, e.g., [5], shown to result in an over representation of perceived
volume scattering when SNR is less than 10 dB. A low SNR primarily affects the NI areas as well as the refrozen melt
pond parts of the MOSAiC floe and similar floes in the vicinity. The sea ice growth during the season means that poor
SNR is a larger problem at the start of the campaign, with the overall thinner sea ice as well as a larger proportion
of refrozen melt pond floes. Moreover, during the melt season stage when R/V Polarstern was located in the marginal
ice zone poor SNR was more prominent.

Region of interests (ROIs) representing the four different ice types were manually identified. During the selection
of these areas we mainly relied on ice charts, ice concentration map and expert visual judgment of the Pauli RGB
compositions. The areas were selected in such a way that they adequately represent the incidence angle variation from
near to far range. Not all ice types were available within all images, in particular were the NI and YI not always
present. When possible was the MOSAiC floe included in the ROIs.

IV. Results and Discussion
During the The MOSAiC drift expedition the sea ice drift remained reasonably stable from the start until December,

and during this time period we also observe stable backscatter values that primarily vary with incidence angle. Once
R/V Polarstern drifted out of the polar hole increased overall sea ice deformation could be observed.

In all frequency bands the co-pol power ratio has been proven to be an excellent measure to distinguish open water
and newly formed sea ice from the thicker sea ice types, SFYI and RFMYI ([1, 6]). In the case of younger ice types,
the co-pol power ratio is not as powerful in discriminating thin ice from open water. PD shows some promise in the
separability of the NI and YI areas as well as separation from thicker ice types. In this study we focus on changes in
backscatter and PD within the SAR images from the freeze-up to the melt onset.

For background do open water and NI have high PD values, though once the transition to YI areas occur the PD
values are reduced and for thicker sea ice the mean values stabilise around 0. This follows the trend seen at other
sea ice campaigns such as N-ICE2015 and Beaufort 2015 during the freeze-up and winter months. In Figure 1 the PD
evolutions for the L- and C-band images during MOSAiC is shown. For all ice types does L-band data have lower
variability than overlapping C-band data.

The transition in PD values from the NI to YI is likely dependent on the penetration depth as the transition occurs
later in time in the L-band data compared to the C-band data for the sea ice areas surrounding the MOSAiC floe
co-inside with the thermodynamic sea ice growth. The L-band images had higher (and positive) PD values at the start
of the freeze-up than the C-band images for the thin ice areas (30 cm thick) surrounding the ship and the MOSAiC
floe, though these values stabilised once the sea ice had grown in thickness and transitioned to negative values by
mid-November. The negative values for both C- and L-band lasted all the time until R/V Polarstern entered the polar
hole. Analysis of the scattering mechanisms in the area indicate predominant surface scattering for the thinner sea ice
area from the freeze-up to the end of December.

Starting with the freeze-up season we can observe that the SI largely have low PD values and a low variability
whereas the DI have mean values close to 0 but with larger standard deviation (std). PD overall has a larger variability
for deformed sea ice compared to the other ice types for both frequencies, and as such can the coefficient of variation
(CV) or std over an area be used to separate the DI from the surrounding sea ice types. This was also confirmed by
investigating MYI areas in Canada. For the MOSAiC floe this meant that the refrozen melt pond areas had low PD
values with low std, and the deformed part of the floe had high std values.

Once Polarstern drifted out of the polar hole the temperatures started to increase and by mid-April they were
above -10oC, with temperatures around 0oC in mid-April. A PD temperature dependency was observed once the
temperatures remained above 0oC the mean value and the std increased significantly in the L-band data, meaning that
this parameter may be possible to use to indicate melt onset. For the C-band data there was an increase in variability



3

Fig. 1. The PD evolution for RADARSAT-2 (top) and ALOS-2 (bottom).

for the SI and a decrease for the DI. Combining the PD evolution for the different sea ice types and frequencies makes
the two frequencies complementary for sea ice type separation and classification.

V. Conclusions
The polarization difference was found to provide separability between younger ice types and thicker sea ice and

provide good separability between high backscatter young ice and MYI. The variability in PD was in L-band SAR was
found to be a useful indicator of early melt stages, due to the shift from stronger VV to stronger HH data. SAR images
from the CIRFA cruise in 2022 at the Belgica Bank fast ice was found to confirm this analysis and the usefulness of
PD will be further investigated using both the MOSAiC, N-ICE2015 and the CIRFA cruise data, utilizing overlapping
L- and C-band images that co-inside with in-situ measurements.
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Abstract
Studies on seasonal variations in radar backscatter exist for landfast ice, but seem sparse for drifting sea ice. Here,

we introduce a new in-situ sea ice drift data set collected by 17 drifters deployed during the CIRFA-22 cruise in Fram
Strait in April-May 2022. The data set covers the transition from freezing conditions to melt onset in Fram Strait and
the Greenland Sea. These drift trajectories provide the rare opportunity to track individual sea ice floes and study
the temporal evolution and incident angle dependence of their radar backscatter signatures as they undergo physical
changes during melt onset. We furthermore demonstrate how the amount of tracked floes can be increased by identifying
distinct surface structures in the vicinity of the drifter location in consecutive radar images.

I. Introduction
Because of its fine spatial resolution and its independence of daylight and cloud conditions, synthetic aperture

radar (SAR) is a primary tool for operational sea ice monitoring. The appearance of different sea ice types in SAR
imagery is determined by radar parameters, such as polarization, frequency, and incident angle (IA), and surface
parameters, such as small-scale roughness, large-scale deformation, and the dielectric properties of the ice and snow
layers. At present, most of the SAR data that is routinely available for sea ice monitoring is acquired in wide-swath
mode at C-band, for example by Sentinel-1 (S1) or Radarsat-2 (RS2). For these sensors, the backscatter signal from a
given sea ice type varies with IA across the swath [1], and it is strongly affected by changes in temperature and snow
properties [2]. Understanding these variations in backscatter is crucial for the interpretation and automated analysis
of the imagery.

The effect of melt onset and the seasonal evolution of C-band radar backscatter over the yearly cycle has been
extensively studied for landfast ice (for example [3, 4]). However, studies tracking the backscatter signature of individual
drifting sea ice floes seem sparse. Here, we use a set of in-situ drift trajectories to track individual ice floes in the
Greenland Sea over several months, covering the transition from freezing temperatures to warmer melting conditions.
We automatically identify the individual drifter locations in overlapping S1 imagery and extract backscatter intensities
from the pixels around the drifter. Furthermore, we visually identify and track the backscatter of distinct surface
features in the vicinity of the drifters that can be followed over time. On short timescales (days), this allows us to
investigate the IA dependence of the exact same sea ice, while on longer timescales (weeks), we can study the backscatter
evolution of drifting ice floes with changes in temperature during melt onset.

The main focus of this work can be summarized in three points:
• We introduce a unique data set of in-situ drift observations in the Greenland Sea in the time period from April

until December 2022.
• We demonstrate the use of the drifter trajectories to track individual sea ice floes and investigate the IA dependence

and the temporal evolution of their backscatter signature.
• We conceptually show how to expand the tracked ice areas by identifying distinct surface structures that are

clearly visible in the vicinity of the drifter locations.

II. Data Set
A. In-situ sea ice drift data

We use in-situ sea ice drift observations collected from drifters that were deployed during the CIRFA-22 cruise to
Fram Strait and Belgica Bank in the time period from April 22nd to May 10th 2022. A total of 17 sea ice drifters were
manufactured in-house at UiT after the design of Rabault et. al. [5]. They sample a GPS position at a 30 minutes
interval and measure wave motion for a duration of 20 minutes every 3 hours. Of the 17 sea ice drifters, 15 were
deployed manually on the sea ice, while 2 were set out by a drone. At the sites of manual deployment, additional
in-situ measurements were acquired: ice thickness, snow depth, snow-water equivalent (SWE), and snow salinity at the
snow-ice interface.

The floes tagged with drifters continuously move southwards into the Greenland Sea, where they eventually break up
or melt. The sea ice drifters then end up in the open water and transition into ocean drifters. They float in the water
and continue sampling location and wave motion. By analyzing the wave motion measurements, we can determine
when this ice-to-water transition takes place (see Section III).
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B. Sentinel-1 data
We use freely available Sentinel-1 (S1) imagery to study the temporal evolution of SAR backscatter from the sea ice

at the drifter deployment sites. S1 operates at C-band and is at present one of the main data sources for operational
sea ice monitoring. All S1 data used in this study was acquired in dual-polarimetric extra-wide swath (EW) mode and
processed to ground range detected format at medium resolution (GRDM). The EW GRDM product is provided at
40x40 m pixel spacing at a swath width of 410 km.

Fig. 1. Left: Full drift trajectories of all 17 drifters that were deployed during the CIRFA-22 cruise. Right: Partial trajectory of the example
drifter (ID 206754) used in this abstract. The markers indicate the drifter location at the time of the overlapping S1 images shown in Figure 2.

III. Method
A. Drifter data processing

A full drifter trajectory consists of a sea ice part, followed by an ocean part. By careful analysis of the wave spectra
time series, which are obtained from the wave motion measurements, we identify 3 stages in each trajectory: sea
ice - transition - ocean. In the sea ice stage, there is little to no wave motion, and the drifter is clearly on sea ice.
During the transition phase, the floe with the drifter starts breaking up or melting as it reaches the marginal ice zone,
which is reflected by an increase in wave motion. Finally, the drifter ends up in the open water (ocean). This stage is
characterized by a major rise in wave motion. We flag all drifter trajectories according to these three stages, and only
use data from stage 1 (sea ice) for this study.

B. Identifying overlapping Sentinel-1 data
To find S1 scenes that overlap with the drifter positions, we loop through the time series of each individual drifter as

long as it is on sea ice. For every data point, we use the SentinelAPI from the sentinelsat python package to search for
overlapping S1 images. As the drifters sample a GPS location every 30 minutes, we search over a time interval from 15
minutes before until 15 minutes after the drifter location timestamp. This results in a maximum time difference of 15
minutes between the S1 image acquisition and the recorded drifter location. Note that the ice floe can drift a distance
that corresponds to several image pixels during this time. Assuming a drift speed of 0.1 m

s , the covered distance will
be 90 m (that is 2.25 pixels) in 15 minutes.

C. Extracting backscatter intensities
The drifters enable us to track backscatter intensities in two different ways.
1) The most straightforward approach is to extract a patch of pixels directly around the location of the drifter, and

compare these patches throughout the time series. This more conventional way of tracking sea ice is, however,
limited when the drifter is close to the edge of the floe, or when the sea ice deforms or breaks up in the direct
vicinity of the drifter. Moreover, the drifter locations in the S1 imagery need to be drift-corrected if the time
difference between image acquisition and GPS timestamp is large enough to result in a significant location offset
in the SAR image.

2) We expand this conventional method by tracking distinct surface structures that are clearly recognizable in the
SAR image in the area close to the drifter location. As a proof of concept, we identify these structures manually.
At a later stage, this step can be automated using feature tracking and pattern matching algorithms.

We investigate the IA dependence by comparing backscatter values of one floe imaged in two consecutive S1 scenes,
once in near-range and once in far-range. Using both proposed workflows to track sea ice, we study the temporal
evolution of the backscatter signatures of distinct sea ice structures and floes.
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IV. Preliminary Results
We collected a unique data set of in-situ sea ice drift observations in the Greenland Sea during the transition from

freezing to melting conditions in 2022. The trajectories of the 17 drifters are shown in Figure 1. Note that these
trajectories include the entire time series (sea ice - transition - ocean), ranging from April to December 2022. (see
Section II-A). A small selection of the overlapping S1 image time series for one example drifter is shown in Figure 2
(top). The drifter location is marked with a red star. We identified two distinct sea ice structures throughout the time
series and selected a region of interest (ROI) in each of them, visualized as purple (ROI 1) and blue (ROI 2) rectangles.
Note that ROI 2 is not drawn in the S1 image of 26/05/22, as it is not clearly recognizable there. Scatterplots of the
Sigma Nought backscatter values in HV versus HH polarization for a small area around the drifter location and for
both ROI’s at the timestamps of the S1 images is shown in Figure 2 (bottom).

Fig. 2. Top: False-color RGB images (R-HV, G-HH, B-HH) of four S1 scenes that overlap with the drift trajectory of drifter 206754. The
images are cropped to areas of 48x48 km around the drifter location at the time of image acquisition, as indicated in Figure 1 (right). The
drifter location is indicated with a red star. Purple and blue rectangles indicate ROI’s on distinct sea ice structures. Bottom: Scatterplots
of HH versus HV backscatter values for a small area around the drifter location and for the two ROI’s at the timestamps of the selected S1
images.

Future work includes tracking the backscatter signatures over the full temporal time series for this case study and
for more floes and distinct surface structures, using the CIRFA-22 drift data set. The larger sample size will allow for
a representative analysis of the temporal variations and incidence angle dependence of radar backscatter during melt
onset.
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Widely used sea ice cover and drift data in polar regions are derived mainly from spaceborne 
microwave radiometer and scatterometer data, and the typical spatial resolution of these products 
ranges from several to dozens of kilometers. Due to dramatic changes in polar sea ice, high-
resolution sea ice data are drawing increasing attention for polar navigation, environmental 
research, and offshore operations. In this paper, we focused on developing methods for deriving a 
high-resolution sea ice volume and dynamics data, i.e. sea ice cover and drift using Sentinel-1 (S1) 
SAR dual-polarization data in extra wide swath (EW) mode.  
The approach (Fig.1) for discriminating sea ice from open water by S1 HH and HV (denoised, as 
examples shown in Fig.2) data is based on a modified U-Net architecture (Fig.3), a deep learning 
network. By employing an integrated stacking model to combine multiple U-Net classifiers with 
diverse specializations, sea ice segmentation is achieved with superior accuracy over any individual 
classifier (example shown in Fig.4). We applied the proposed approach to over 28,000 S1 EW 15 
images acquired in 2019 to obtain sea ice cover products in a high spatial resolution of 400 m. By 
converting the S1-derived sea ice cover to concentration and then compared with Advanced 
Microwave Scanning Radiometer 2 (AMSR2) sea ice concentration data, showing an average 
absolute difference of 5.55 % with seasonal fluctuations (Fig.5). A direct comparison with 
Interactive Multisensor Snow and Ice Mapping System (IMS) daily sea ice cover data achieves an 
average accuracy of 93.98 %. These results show that the developed S1-derived sea ice cover 
results are comparable to the AMSR and IMS data in terms of overall accuracy but superior to these 
data in presenting detailed sea ice cover information, particularly in the marginal ice zone. So far 
we have generated the S1-derived sea ice cover dataset from 2019-2022. 
 

 

Fig.2 Flowchart of the proposed method for 

deriving sea ice cover information from S1 EW 

images in HV and HH polarization.  

Fig.1  Example of the process of S1 data: (a) 
original HH-polarized data (b) incidence angle-
corrected HH-polarized data (c)original HV-
polarized data and (d)denoised HV-polarized 
data using the method proposed by Sun and Li 
(2020). 



 

Fig.3 The overall architecture of the proposed sea ice segmentation model for the S1 EW data 

based on the U-Net deep learning algorithm. 

 

Fig.4 An example of S1-derived sea ice cover 
and its comparison with the visual 
interpretation result. (a) RGB false-color 
composite image. (b) and (c) S1-derived and 
visual interpretation of sea ice cover, with 
yellow indicating sea ice and cyan indicating 
open water. (d) Differences in sea ice cover 
between (b) and (c) (visual interpretation - S1 
derive).  

 

 

Fig.5 Comparison between the S1-derived Arctic sea ice concentration data and AMSR2 data for 
the whole year of 2019. The red dots reflect the absolute daily difference, and the red line is the 
7-day average absolute difference. The blue crosses are the daily sea ice concentrations in the S1-
covered area calculated based on the AMSR2 data, and the blue line is the 7-day average sea ice 
concentration. 

 

A state of-the-art method (Fig.6) combining feature tracking (FT) and pattern matching (PM) 
techniques was applied to sequential S1 SAR data in 2020 to derive sea ice drift from the central 



Arctic to the Fram Strait. The SAR retrievals were validated with drifting buoys. For temporal 
intervals of S1 data of approximately 24 h, 15254 collocations (Fig.7) were collected from January 
to June and from October to December, yielding a 0.00 cm/s bias for the drift velocity magnitude 
and 0.27◦ for direction with corresponding root mean square error (RMSE) of 0.47 cm/s and 4.73◦ 
(Fig.8). Using temporal intervals of S1 data of less than 24 h, we retrieved SID from July to 
September. A total of 644 collocations yields a comparison with a bias of 0.52 cm/s and 4.62◦ for 
the drift magnitude and direction, respectively. The corresponding RMSE values are 1.85 cm/s and 
20.73◦. The comparisons demonstrate better performance than the operational SAR-based sea ice 
drift product using the maximum cross correlation (MCC) method and are consistent with seasonal 
trends in drift velocity with the coarse resolution product. We also analyzed the variations in SAR 
retrievals and further estimated appropriate temporal intervals, making it feasible to conduct long-
term SID retrievals based on spaceborne SAR data at high spatial resolution in the Arctic.  

 

Fig.6 The combined method for retrieving SID from S1 image pairs. (a) The main flowchart of the 
combined method. (b) Illustrations of the interpolation (b1) and PM module (b2). (c) Vectors 
derived by the steps. (c1) The sparse vectors extracted by the FT module. (c2) The vectors full of 
the regular grid by the interpolation. (c3) The good vectors (blue) and the filtered vectors (red) 
derived by the PM module. (c4) The final output vectors. 
 

 

Fig.7 Distribution of 15,898 SAR-derived SID 
vectors compared with MOSAiC buoy data 
(Daily temporal (purple markers): 15254 
collocations) 

Fig. 8 Comparisons between SAR-derived SID 
based on daily-scale temporal intervals and 
MOSAiC buoys in the velocity magnitude 

 



Operational SAR-based Sea Ice Concentration Retrieval Using
Convolutional Neural Networks
The Arctic is undergoing unprecedented changes due to anthropogenic warming, and the
thinning of the Arctic sea ice is leading to increased human activity in the region. The growing
maritime user group accessing wider parts of the Arctic calls for detailed and timely information
about the state of the Arctic sea ice for maritime safety and planning purposes. Synthetic
Aperture Radar (SAR) imagery enables detailed year-round mapping of sea ice conditions due
to the high spatial resolution (<100m), the independence of solar illumination and the fact that
SAR is unimpeded by cloud cover. SAR imagery is therefore an important source of information
for the National Ice Centres around the world, where ice analysts produce sea ice charts for
maritime users by manual interpretation of primarily SAR imagery. With the ever-expanding
archives of readily available satellite imagery, the task of manually interpreting these data
becomes laborious and time-consuming. A partial automation of this process can assist the ice
analysts in the delivery of high-resolution sea ice products in near-real time, and a fully
automated sea ice mapping system can provide
high-resolution sea ice products to be integrated into
forecast models to potentially improve forecast
quality.

For several decades the design of SAR-based sea
ice classification schemes has been studied within
the sea ice community. Traditional machine learning
(ML) and computer vision techniques have been
applied to the task of SAR-based sea ice mapping
with limited success. SAR data is inherently
ambiguous, and many ML methods therefore rely on
manually engineered texture features, like
GLCM-based features, that capture contextual
information [Clausi, 2001]. Such approaches,
however, have a common bottleneck in that they
depend on the quality and usefulness of the
engineered features, and humans are bound to miss
important latent features.

Advances in deep learning (DL) and computing
technology over the last decade have paved the way
for the use of advanced computer vision techniques,
such as Convolutional Neural Networks (CNNs), for
the automatic analysis of high-resolution satellite
imagery. CNNs automatically learn spatial representations relevant to the task at hand, and
therefore bypasses the need for manually engineered image features. In recent years, Fully
Convolutional Networks (FCNs) have been applied to the task of automatic sea ice
concentration mapping using Sentinel-1 SAR dual-polarized imagery, generally with promising
results [Malmgren-Hansen et al., 2020; Stokholm et al., 2022; Gélis et al., 2021].



The main challenge faced by all data-driven sea ice property retrieval algorithms is the shortage
of in-situ information. The collection of comprehensive in-situ data over sea ice is a
resource-intensive process and is often not feasible. Despite this, several National Ice Centers
regularly produce manually drawn ice charts with a history spanning several decades. As of
today, these ice charts provide the best alternative for generating large training datasets, which
are necessary for the development of modern deep learning-based models. In our approach, we
train a CNN in a supervised setting using manually produced ice charts as label data. Our CNN
fuses high-resolution Sentinel-1 SAR imagery and Passive Microwave Radiometer (PMR)
observations from AMSR-2 to generate high-resolution maps of sea ice. The CNN has been
trained on a vast dataset containing ice charts from the Greenland and Canadian ice services
co-located with Sentinel-1 EW imagery and AMSR-2 observations. A subset of this dataset as
well as get-started tools has been made publicly available as part of ESA’s AutoICE challenge
(https://platform.ai4eo.eu/auto-ice). The geographical
distribution of the dataset is shown in figure 1.

Classifying sea ice in SAR imagery is not a trivial task. While
microwave signatures in SAR imagery show patterns related to
ice formations, the differentiation between different sea ice
conditions is challenged by ambiguities in backscatter
intensities, noise phenomena and wind-induced surface
roughness, etc., which is apparent in previous studies
[Malmgren-Hansen et al., 2020; Stokholm et al., 2022; Gélis et
al., 2021]. Our approach tackles this obstacle by increasing the
receptive field of the CNN and by fusing the SAR imagery with
PMR observations to exploit the advantages of both instrument
types - that is, the high spatial resolution of the SAR imagery,
and the more reliable discrimination of sea ice and open
water in the PMR observations.

Our CNN processes Sentinel-1 EW and IW GRD products
resampled to an 80 m grid, which is close to the native
spatial resolution of Sentinel-1 EW products. Similarly, the
output of the CNN is on an 80 m grid. The Sentinel-1 HH
and HV bands have been noise-corrected using the
accompanying metadata and the CNN is largely unencumbered by any remaining noise-related
artifacts.

We set aside a test dataset that we use to evaluate the performance of the CNN. Figure 2
illustrates an example of a Sentinel-1 scene from the test dataset. The imagery was acquired in
May 2018 and covers the Scoresbysund Fjord in East Greenland. The figure shows the HH and
HV bands as well as a manually produced ice chart and the output sea ice concentration map
from our CNN. Overall, the CNN achieves an R2-score of 92% against the manually produced
ice concentration charts in the test dataset, indicating a good level of agreement between the
CNN and the ice analysts. Note, that while manually produced ice charts are relatively



high-resolution and available at scale, and thus an obvious
choice as label data, the charts have inherent uncertainties
that are not well-documented - such as analyst subjectivity,
inter- and intra-analyst variation and mislabeling errors. Any
systematic biases introduced by the manual ice charting
method (e.g. an overestimation of intermediate sea ice
concentrations) might therefore be reproduced by the CNN.
Given the size and diversity of the training dataset, we
believe inter- and intra-analyst variability is not reproduced
by the CNN.

The CNN is implemented in operations at DMI and provides
high-resolution sea ice concentration in near-real-time for
the benefit of the ice analysts in the DMI Greenland Ice
Service that use the sea ice information from the CNN as
input to the ice charting process.
Products based on the CNN are also distributed within the
Copernicus Marine Service (since November 2022) as the
“DMI-ASIP sea ice classification - Greenland” dataset
[Dinessen et al. 2022]. From March 2023 similar products

for the Antarctic will be distributed in Copernicus Marine
Service. The Greenland and Antarctic products include
sea ice concentration information and associated
uncertainties.

The failure of Sentinel-1B in December 2021 has affected
the coverage and update frequency of derived sea ice products. Robustness against such
events calls for the development of ‘sensor-agnostic’ models that allows for the ingestion of
additional SAR products in the processing chain, such as SAR imagery from the Radarsat
Constellation Mission. A robust system with good coverage and update frequency delivering
near real-time SAR-based sea ice products for both hemispheres is an attractive alternative to
the manually produced ice charts or PMR-based sea ice products (which lack in temporal and/or
spatial resolution) that is being used for data assimilation in sea ice forecasting systems.
Manually produced ice charts are valuable for deep learning model training since they are
available at scale and they can be accurately matched, spatially and temporally, with SAR
images. However, due to the manner in which the ice charts are drawn (as homogeneous
polygons consisting of partial concentrations), they are not a physically realistic representation
of the state of the sea ice. In order to properly validate these deep learning models, we need a
higher resolution dataset from which the state of the sea can be reliably extracted and that can
be matched, spatially and temporally, with SAR images, e.g. optical imagery. While most
research into the field of automatic sea ice mapping has been concerned with sea ice
concentration mapping, the National Ice Centers also mention Stage of Development (ice type)
and Floe Size as important sea ice properties for their users.
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Potential Application of the Earth Explorer 10 candidate Harmony for Sea Ice Model Validation 

Sea ice in the Arctic Ocean is in continuous motion under influence of wind, ocean, and internal 
stress. Sea ice deformation (computed as a spatial derivative of the drift field) is localized in space 
and time and forms elongated, narrow zones, also called Linear Kinematic Features (LKFs). The 
frequency distribution of deformation rates as well as the pattern, density, orientation, and 
intersection angle of LKFs are a characteristic feature of sea ice.  

Sea ice drift and deformation can be observed by pattern matching techniques applied to passive 
microwave, or scatterometer, or synthetic aperture radar (SAR) satellite data. The disadvantage of 
the type of ice drift product is the large time delta required between the image acquisitions, and a 
relatively low spatial resolution. 

Harmony is a candidate for the Earth Explore 10 mission. The two Harmony satellites will fly in a 
reconfigurable formation with Sentinel-1D. Both will be equipped with a multi-angle thermal 
infrared sensor and a passive radar receiver, which receives the reflected Sentinel-1D signals using 
two antennas. In the stereo formation, the Harmony satellites will fly approximately 300 km in front 
and behind Sentinel-1, which allows for the estimation of instantaneous sea-ice drift vectors. As it 
was shown by Kleinherenbrink et al., [2021] the sea ice drift and deformation can be derived from 
simulated Harmony data, but the signal-to-noise ratio is quite low. 

The goal of this study is to evaluate the applicability of the Harmony data for statistical 
characterisation of sea ice deformation in the Arctic Ocean and feasibility in utilisation for tuning 
parameters of the next generation sea ice model (neXtSIM, [Olason et al., 2022]). NeXtSIM can 
realistically simulate the sea ice motion and deformation. Both the LKFs and the spatial scaling of the 
sea ice deformation rate simulated by neXtSIM compare quite well to PMW and SAR observations. 
Sensitivity of synthetic Harmony data to neXtSIM rheological parameters is studied. A scenario of 
model validation against instantaneous sea ice drift satellite estimates is suggested. 

Denoising Doppler shift data 
Computing the Doppler shift signal and adding thermal noise is performed with the same forward 
model (FM) as in [Kleinherenbrink et al. 2021]: 

D, ND = FM (U) 

This yields 2D fields of Doppler shift from Concordia, Discordia, and Sentinel (DC(R,A), DD(R,A), 
DS(R,A)) and the thermal noise equivalent sigma zero (NESZ) of the Doppler signal (ND(R,A)). Each 
Doppler shift field is further treated separately and the subscripts and (R,A) dependence is omitted 
for clarity. 

Thermal noise is added as a product of NESC profile and normally distributed noise (N): 

DN = ND * N 

Noise correction is further performed for each field of D individually. 

Given that the profile of NESZ is known a priori we can perform “texture noise” correction suggested 
by Park et al. [2019] for reducing amplitude of signal variations near inter-swath boundaries where 
NESZ is the highest: 

D1 = Gf(DN)*NN + DN*(NN – 1), 



Where Gf is a 2D Gaussian filter with size of 10 pixels (20 km) and NN is ND normalized into range 0 – 
NMAX, with NMAX = 0.7 being found empirically. 

Next, the low-pass filter is applied to D1 as suggested in [Kleinherenbrink et al. 2021, eqs. 19 – 22]: 

D2 = Kf(D1, D). 

Note, that the original fields with Doppler shift (D, prior to adding noise) are required to compute 
the cut-off frequency. 

Finally, the anisotropic diffusion filter [Perona and Malik, 1990] is applied is applied for smoothing 
homogeneous U/V fields and preserving high contrasts: 

D3 = ADf(D2, gamma=0.25, kappa=5). 

Denoising instantaneous sea ice drift velocities 
Velocity fields (U) are reconstructed from D, DN and from D3 using the same retrieval model (RM) as 
in [Kleinherenbrink et al. 2021], and the low-pass filter (Kf) is applied for comparing results of the 
initial denoising approach (UM) and the new one (U3): 

UN = RM(DN); UM =  Kf(UN, U); U3 = RM(D3) 

Figure 1 shows that velocities reconstructed from denoised Doppler shift (U3) seem cleaner than the 
denoised velocities (UM) and have a lesser effect of thermal noise range variations. 

 

 

 

Figure 1. Velocity components after the steps of processing: U – initial range and azimuth components, UN – from raw noisy 
Doppler shift, UM – Kleinherenbrink method, U3  – new smoothing, U4  – smoothing and clustering. 

The next step of denoising the velocity fields is clustering. The clustering can be described as 
grouping of objects (in our case pixels) with similar characteristics (in our case velocities and 
coordinates). The clustering is applied under assumption that sea ice deforms as a solid body with 
low elasticity and ability for brittle break-up. Therefore, the neighbour elements can have either the 
same velocity (when they belon to an unbroken ice, i.e., an ice floe) or differ substantially (when 
they belong to different ice floes). After the clustering is performed, the small-scale variability on the 
edges of clustering is reduced by applying a median filter to the image with labels (Figure 1). 



Computing deformations 
The discontinuities (dUM1) in the field of UM were identified the same way as suggested in 
[Kleinherenbrink et al. 2021]. This method was slightly optimized for computing discontinuities dUM2 
by reducing resolution, smoothing UM with a Gaussian filter and thresholding geometrically averaged 
X- and Y- gradients. Divergence (Ñ) and shear (t) components of sea ice deformation of the velocity 
fields U, and UA was computed by calculating the velocity gradients (Vg) in neighbour elements and 
then using equations 23 and 24 from [Kleinherenbrink et al. 2021]. 

A mosaic of sea ice deformations was created by generating 15 swaths of Harmony observations for 
the 1 January 2019 and interpolating the swath data onto a grid in Polar Stereographic projection. 
Daily mean deformation map was created by averaging the individual swaths. Two neXtSIM runs 
with distinctly different parameters of rheology were used to generate Harmony data, retrieve / 
denoise velocities and compute deformations. 

Figure 2 shows that neXtSIM rheology parameters significantly affect the pattern of sea ice 
deformation. Methods M2 and A were tuned for denoising and computing deformations on the first 
run and obviously work better with the synthetic data generated from the first run: the major 
deformation features north of Greenland, Canadian Archipelago and Laptev Sea are well visible. 
Method A seems to be better capturing also small deformation features and producing a less noisy 
map. Both methods perform poorer on the data from the second neXtSIM run: large deformation 
zones north of Greenland, near Novaya Zemlya and in the Laptev Sea are not reconstructed, small 
features are almost not visible, the maps look quite noisy. 

 

 

Figure 2. Maps of divergence (Ñ) and shear (t) computed from the two neXtSIM runs (upper and lower rows) from original 
velocities (left) and from Harmony denoised velocities UM2 (middle) and UA (right). 

Analysis of PDFs of deformation (not shown here) indicates that not only the pattern, but also the 
PDF of the neXtSIM ice deformation is sensitive to neXtSIM rheology parameters: the second run 
generally produces lager deformation, and the skewness of PDFs is lower, indicating lesser 
localisation of deformation zones (wider LKFs). 

Nevertheless, the PDFs of deformation from two runs (computed either by M2 or by A methods) 
seem almost equal. That indicates low sensitivity of the noisy ice drift velocity field and 
corresponding ice deformation to the actual rheology of sea ice and high sensitivity to the processing 
method. 



 
Much of the current understanding of melt ponds (and corresponding sea ice albedo 
evolution) is based on in-situ studies (e.g. Eicken et al., 1994, Perovich et al., 2012, 
Tschudi et al., 2008), however, satellite-based observation are the way to map and 
monitor melt ponds and albedo changes on a pan-Arctic scale. In fact, given that melt 
ponds are generally small and change rapidly it is of great interest the use of remote 
sensing data with high spatial and temporal resolution to monitor melt ponds on different 
types of sea ice during the melting season.  
 
The application of satellite data to understand spatial and temporal variations in melt pond 
coverage has been traditional though estimates using optical sensors (during cloud-free 
conditions) (e.g. Tschudi et al., 2008, Rösel et al. 2012, Istomina et al., 2020). However, 
the enhanced spatial resolution of synthetic aperture radar (SAR) compared to 
radiometers and scatterometers along with SAR’s ability to image our Planet’s surface 
irrespective of cloud cover, is gaining a lot of interest by researchers to bridge the gap 
between current knowledge of evolving ice-ocean-atmosphere between melt onset and 
freeze up (Scharien et al., 2010). 
 
However, the availability of spatial resolution to perform large scale monitoring in the high 
regions is limited. Optical missions like Sentinel-2 provide a very interesting temporal 
resolution however the availability of cloud-free data is scarce at higher latitudes. Some 
works have been focusing on the derivation of melt pond fraction and proxy estimates of 
surface albedo in order to understand the evolution of summer ice albedo and to evaluate 
the potential of SAR for aiding the parameterization of sea ice and climate models 
(Scharien et al., 2014). 
 
Furthermore, due to the difficulty in collecting data from polar regions, the relatively 
expensive costs, and logistics, it is important to maximize the potential benefits deriving 
from data. According to Rolnick et al. (2019), the number of applications of machine 
learning to study polar regions is not high although it has been increasing over the past 
decade. The combination of satellite imagery with machine learning holds the potential to 
address global challenges by remotely estimating environmental conditions in data-poor 
regions – such as the Arctic region.  
 
The proposed approach focuses on using multi sensors to increase the temporal 
resolution and enhance spatial resolution and accuracy of previous melt ponds and melt 
pond fraction products or studies. A main focus will be given to synthetic aperture radar 
(SAR) data in different incidence angles for various ice types. The main reason for using 
SAR is due to its weather independence, meaning it is not constrained by cloud coverage 
as optical imagery - which has been the main source of information for melt ponds 
monitoring. In addition, the heterogeneity of other datasets will be merged with SAR data 
due to its potential to extent help bridging possible gaps of non-existence data to 
guarantee the continuous monitoring and understanding of melt ponds formation and 
dynamics during melting period. The multi source datasets will be used to train models to 
achieve the following key objectives: 
 

1) Classification of melt ponds 
2) Prediction of melt pond fraction 

 



 
 
 
Three additional additional and major expected outcomes or by products are: 
 

1) The capability of tracking evolution of melt ponds, as well as extracting the 
feature importance (i.e. for the case where random forests are applied) to 
understand the importance of each variable on the prediction results. 

 
2) The creation of training datasets specifically focused on melt ponds, which to 
our knowledge are not currently available. 

 
3) The retrieval of statistical information such as the relationship between the 
polarimetric signatures and microwave emissivity of melt ponds, and retrieve 
information on spectral and radiometric properties, along with other variables that 
impact melt pond formation. 
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Quadruple Helix Framework for Sea Ice Monitoring: Next Steps 

Ekaterina Kim, Roger Skjetne, Knut Høyland 
Norwegian University of Science and Technology, Trondheim, Norway 

The Arctic - one of the most desolate and sparsely populated areas on our planet - plays a crucial 
role in regulating the world's climate. Despite Arctic’s importance for the Earth’s climate, this 
area remains severely under-monitored and not well known to the broad public. Few humans 
are directly involved in monitoring (this is mostly done using remote sensing tools). As 
urbanization continues, there is limited human engagement, and participation in monitoring of 
nature and a further disassociation with it. In view of this challenges, we readopted a quadruplex 
helix framework for monitoring of sea ice. The framework relates sea ice knowledge at different 
spatial and temporal resolutions to each other (i.e., remote sensing, in-situ scientific 
measurements, citizen science, and indigenous knowledge)  

 

 

In addition to the challenges 
with local data collection, 
access to (and processing) the 
Arctic data is a persistent and 
important multidimensional 
problem; not all Arctic countries 
are willing to share their 

knowledge, but for those who do share, the amount of shared data now outpaces experts’ ability 
to check, interpret, and make complex decision based on these data. As a result, our ability to 
predict rapid changes of the environment and manage the effects of environmental change is 
severely limited. Traditional remote sensing techniques (using satellites) suffer from significant 
uncertainties near the coast, close to the sea ice edge, etc. Uncrewed aerial vehicles and sail 
drones have limited coverage and operability window (e.g., darkness, heavy snow, etc.). We are 
not always able to validate & trust the Arctic satellite products when looking at rapid & localized 
events or changes on the ground − a recognized shortcoming by the Arctic Council, Copernicus, 
and International Ice Chart Working group communities. Solving this shortcoming has been 
difficult in the past due to the lack of technology for automated collection, processing, and quality 
control of the ground-truth Arctic data. Empirical testing of the popular state-of-the-art machine 
learning algorithms applied to sea ice revealed a need for pre/post training and systematic 
evaluations. Fig. 2 is a typical example of false negative errors in some of the analysed algorithms.  

In addition, sea ice data users (fisheries, forecasting agencies, etc.) increasingly require spatially 
explicit information on the uncertainty of sea ice parameters for evaluating the risk that a specific 
outcome of further analysis of the information will be incorrect. However, error estimates are 
lacking in practically all the sea ice datasets available today. It is, therefore, a priority to develop 
and standardize methods to compute consistent and comparable error estimates. This is 

Fig. 1. Quadruplex helix 
framework for sea ice 

monitoring and its challenges. 



particularly important for in-situ observations since realistic uncertainty estimates are essential 
for meaningful integration of these data in remote sensing and other higher-level products and 
studies (automated sea ice charting, climate modelling, etc.). 
 

  

Fig. 2 False negative output errors (ChatGPT Jan 9 and Feb 13 versions; Google search engine) 

During the workshop, the first significant results from two (or more) parallel projects will be 
presented with the focus on the blue colored elements in Fig. 1. 

Digital Sea Ice 

 
As a part of this project, a multiscale digital method and a system is being built by integrating 
regional sea ice forecasting models and local ice-ice/ice-structure numerical models with in-situ, 
shipboard, and space observations of the Arctic sea ice and of environmental conditions. This 
enables improved spatial and temporal resolution in the models, to achieve more precise 
forecasting of ice conditions in the Arctic – including better understanding of long-term variations 
in the polar ice cover. It involves development of novel methods for use of artificial intelligence 
(AI)-based analytics of synthetic aperture radar and optical imagery from satellites, marine radars 



and lidars, visual and infrared cameras, and other enabling technologies. Further objectives are 
to accurately map the sea ice flow in high resolution and generate quality-controlled sea ice drift 
forecasting. Novel methods for monitoring and analysis of sea ice dynamics and fracturing 
processes based on data from heterogenous sources are being developed and will be used to 
update the multiscale model from the real observations.  
The project aims at developing novel methods and a digital infrastructure for improved spatial 
and temporal forecasting and decision support in an increasingly dynamic Arctic environment 
due to climate changes. Such infrastructure will enable more accurate data and information to 
be produced, thus resulting in better insight on polar Earth systems, as well as improved safety 
for maritime voyages. 

NTNU Oceans Pilot on Arctic marine environment 

This project covers a university-wide aspects of topics from engineering, physics, biology to social 
anthropology. The Arctic marine environment (including Baltic and Europe’s ice-covered inland 
waterways) with sea ice and icebergs distinguishes itself from open water environment further 
south in two vital ways: a) It is more complicated (e.g., more parameters are required to describe 
it) and b) the available data is scarce. We are working with models and methods to predict short 
- and long-term behavior of the environment and our human interaction with it, within the 
framework of risk, reliability, and data. One of the main outcomes is that there are important 
challenges (and possibilities) in combining measurements in different spatial and temporal 
scales. Data measured in-situ is usually very local (either in-situ field work with point 
measurements in space and time, or drifting buoys with continuous temporal records), whereas 
satellites based usually covers larger areas with a low frequency. In addition, the physics of how 
the diverse signals from satellites reflect from the ice cover is not completely understood. The 
uncertainties should be studied through collocated measurements with different sensors (from 
down on the ice to satellite sensors) and data analysis methods, but also through studying the 
physics of how signal reflect from different ice covers (wet/dry snow, melt ponds, etc.). 
 
During the workshop, we want to engage in dialog with ESA 
and other members of the program committee and chairs on 
specific needs, priorities for in-situ observations of sea ice, 
functional requirements to the collected in-situ data (above, 
at, and below the sea ice surface) as well as for uncertainty 
representations, in view of the sensing technologies, data 
processing and quality control tools being developed at the 
Norwegian University Science and Technology (NTNU). This 
will help in achieving a broader impact from ongoing research 
projects, create the potential for researchers to collaborate 
across multiple dimensions of scale, and to build a more 
precise picture of harsh and unforgiving Arctic environment. 
This is urgently needed in a view of accelerating climate-change-driven events and impacts of 
human activities on our planet’s ecosystems.  
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Can We Retrieve Sea Surface Salinity with SAR
Measurements?

Thibault Taillade, Marcus Engdahl, Diego Fernandez ESA/ESRIN, Frascati

Abstract

Sea Surface Salinity (SSS) is measured operationaly with Radiometers (e.g. SMOS) with a resolution from 25 to 40 km that is
rather constraining for coastal areas and estuaries. In this contribution, we theoretically evaluate Synthetic Aperture Radar (SAR)
sensitivity to SSS. This work focuses firstly on the variations of the dielectric properties of seawater with salinity at different
SAR frequency bands (P-, L- and C-bands) and then evaluate the consequences on the Normalized Radar Cross Section (NRCS)
simulated using Bragg models. The main challenge for SSS retrieval is to disentangle the sensitivity to dielectric properties from
the surface roughness contribution in the SAR backscattered signals. The results show that the NRCS sensitivity with salinity
increases with decreasing operating frequency, and NRCS sensitivity to roughness decreases with decreasing operating frequency
providing potential retrieval strategies.

I. INTRODUCTION

Sea Surface Salinity is an important parameter driving ocean circulation and is currently measured at a 25 to 40km resolution
with SMOS [1], [2]. Nevertheless, it might be interesting to derive SSS with higher resolution thanks to SAR sensors(sub-
kilometric), especially in coastal areas. A classical observable used for geophysical parameter retrieval in oceanography is the
NRCS (Normalized Radar Cross Section) in VV polarization at C-band because of its sensitivity to the sea surface roughness
[3]. Indeed geophysical models have been developed in the past mainly at C-band for wind retrieval (CMOD5N, CMOD7N)
[3].The purpose of this work is to investigate possible schemes for salinity retrieval using SAR imaging. A first experiment
at P-band has been carried out in [4] with promising results. In this study, we perform a more general theoretical sensitivity
evaluation considering the main ocean physical parameters such as SSS (Sea Surface Salinity), SST (Sea Surface Temperature),
wind speed and direction, and measurement configuration such as radar operating frequency and incidence angles. We propose
to evaluate the impact of salinity variations on the NRCS.
The first part of the manuscript recall the dielectric properties of seawater at different SAR frequencies (P, L and C-bands)
and presents the models used for NRCS simulations. The second part highlights the main results of this theoretical study.
The main challenge in this exercise is to disentangle in the SAR backscattered signal the sensitivity with the roughness and
the sensitivity with the dielectric properties. Solutions to maximize the seawater dielectric properties impact and minimize the
roughness impact based on physical consideration will be finally discussed at the end of the abstract.

II. THEORETICAL BACKGROUND

A. Dielectric properties of seawater at SAR frequencies: Debye Model (Klein and Swift 1977 [5])

(a) Relative permittivity ε′ (b) Water loss factor ε′′

Fig. 1: Dielectric constants of seawater at radar frequencies from VHF to C-band for different values of salinity from 0 to
38 psu (practical salinity unit, g/kg). The light shade indicate a low salinity as freshwater and the dark shade indicates high
salinity close to seawater.

In this paper, we adopt the following convention: ε = ε′ − jε′′. The real part ε′ is denominated the relative permittivty and
the imaginary part ε′′ the loss factor. Figure 1 presents the real and imaginary part of the seawater dieletric permittivity for
usual radar frequencies from VHF to C-band at T=25 °C. In Figure 1a is plotted the relative permittivity and in figure 1b the
loss factor associated to the imaginary part of the dieletric permittivity.

We can observe in Figure 1a that ε′ varies only a little with the salinity within the considered range of SAR frequencies
(roughly from 70 to 80 at P and L-band and from 67 to 75 at C-band). On the contrary, ε′′ associated to the imaginary part of
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the dieletric permittivity is subject to strong variation at low frequencies depending on the salinity (at Biomass frequency from
0 to 300). The impact of the salinity can therefore be exploited at different frequencies of interest. We focus on the behaviours
at the Biomass [6], [7] operating frequency (435MHz), ROSE-L [8] operating frequency (assumed 1.4 GHz) and Sentinel-1
[9] operating frequency (5.405 GHz).

B. NRCS (Normalized Radar Cross Section)

In the range 30 - 60 ◦ of incidence angle, the most significant contribution to the NRCS is the Bragg Scattering [10],
therefore we allow ourselves for this preliminary study to use the tilted Bragg Model introduced in [11] to describe the NRCS
σ0. More accurate models taking into account the specular and breaking wave scattering contribution [12] have been developed,
it can be interesting to implement them in the future to improve the NRCS modelisation. In short terms, the model that we
considered for the study [11] takes into consideration Bragg waves (ripple process) and longer waves that modulates local
processes. The outcome is a sum of pure Bragg contributions weighted by the probability density function of the local slopes
considered as a random process. The standard deviation of the slopes are directly derived from the wave spectrum model. The
pure Bragg σ0b is expressed as follows:

σ0b(θ
′, φ) = 16πk4r |G(θ′)|2Ψ(kbragg, φ) (1)

• kr radar wave number
• kbragg = 2kr sin(θ

′)
• θ′ Local incidence angle
• G Pure Bragg Coefficent =f(Rpq)= f(θ′, SSS, SST, kr) with Rpq Fresnel Coefficient in polarization p, q
• Ψ 2D- Directional Elevation spectrum = f (Wind direction, wind speed)
Different development and strategies have been proposed for the 2D elevation spectrum Ψ, in the last 30 years (e.g. Elfouhaily

[13], Kudryatsev [14] or Hwang (2015) [15]). We used the 2D spectrum developed by Elfouhaily et al. in this study because
well established and recognized in oceanography literature 1.

III. MAIN THEORETICAL RESULTS

In this part we present an example of results obtained for the Bragg NRCS considering the salinity impact with different
roughness (wind) assumptions, operating frequency and incidence angles. For this analysis, we consider salinity conditions
from 1 to 40 psu (practical salinity unit, g/kg) with SAR configurations from 30 to 60 ◦ of incidence angle.

(a) NRCS VV 5 m/s C-band (b) NRCS VV 5 m/s L-band (c) NRCS VV 5 m/s P-band

(d) NRCS VV 15 m/s C-band (e) NRCS VV 15 m/s L-band (f) NRCS VV 15 m/s P-band

Fig. 2: NRCS VV modeled with Bragg scattering at 5 and 15 m/s of wind speed and wind direction toward the radar (φ = 0
degree) at C-, L- and P-bands. a. C-band wind=5m/s, b. l-band wind=5m/s, c. P-band wind=5m/s, d. C-band wind=15m/s, e.
L-band wind=15m/s, and f. P-band wind=15m/s

Even though such model cannot describe with a high fidelity all configurations (strong wind, extreme incidence angles,
surface current, breaking waves etc. [12]) it is a first approximation to evaluate the relative impact of wind and salinity in an
operational retrieval strategy. As we can observe from the Figure 2, the salinity gains in impact on the NRCS from C-band
(Figures 2a, 2d) to P-band (Figure 2c, 2f). However, the variation induced by the salinity remains quite low (few dBs on the

1useful tools and python librairies for SAR ocean scattering can be found in https://github.com/pakodekker/oceansar
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range 0-40 psu at P-band).
Overall, L-band results represent a medium case both in term of sensitivity to salinity and roughness as we can see in Figures
2b and 2e. It can be however highlighted from the model results a crucial information, and it is intuitively consistent from the
wavelength scale point of view, that the wind impact on the NRCS decreases from C-band to P-band. For instance between
5 m/s and 15 m/s a difference of around 10dB is observed for a given incidence angle at C-band in Figures 2a and 2d,
whereas it is around 1 to 2dB at P-band in Figure 2c and 2f depending on incidence angles. Those results, even highlighting an
higher sensitivity with salinity while decreasing the frequency, are encouraging but still challenging considering an operational
retrieval framework.

IV. DISCUSSION

From the previous section, the NRCS exhibits behaviors that may be interesting for SSS retrieval schemes, however, with
variation close to the SAR sensors detection limits.
At C-band, the NRCS for VV polarization appears to be unaffected by salinity variation but is known to be sensitive to wind
conditions: it is indeed an observable used to derive wind speed by inverting geophysical models such as CMOD5N [3].
P-band reveals as expected theoretically the most sensitive NRCS to salinity among the three frequency bands.
From a general point of view, it can be noticed that the consequence of decreasing the operating frequency seems to decrease
the sensitivity of the NRCS to roughness and therefore decrease the possible errors associated to wind while injected into a SSS
retrieval process. Even though the retrieval capabilities appears to be challenging from this theoretical sensitivity study, one
advantage of SAR imaging is its intrinsic high resolution (meters to severals tens of meter). Therefore, a consequent averaging
can be performed to improve the estimation (decreasing noise variance) of parameters and achieve an acceptable resolution
for oceanographic applications (sub-kilometric).

V. CONCLUSION

The purpose of this work was to evaluate capabilities to retrieve SSS at high resolution from SAR images. This work focused
firstly on the dielectric properties of sea water variations with salinity at different SAR frequency bands (P-, L- and C-bands)
and then evaluated the consequences on the Normalized Radar Cross Section (NRCS). Retrieval schemes have been discussed
and have to be further analyzed with in-situ data and SAR measurements to evaluate operational retrieval capabilities.
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Abstract: Polar lows are intense maritime mesoscale cyclones arising from cold air 

outbreaks and forming in poleward of the main baroclinic zone. Due to their short 

lifetime (<48 hours) and small horizontal scales (200~800 km), they remain difficult to 

monitor and forecast using sparse synoptic observing network and operational 

numerical weather prediction models. In this study, we use multi-temporal satellite data 

to recognize and track a strong and short-lived polar low occurring in Greenland Sea. 

This polar low was observed 8 times during its lifecycle (~12 hours) by spaceborne 

synthetic aperture radar (SAR) and passive radiometer on February 10, 2016. During 

its early development stage, the maximum wind speed from SAR-retrieved wind field 

is about 22 m/s. Based on an improved marker-controlled watershed transformation 

method, we identify polar low centers from three high-resolution SAR images acquired 

by RADARSAT-2 and Sentinel-1A. We use total atmospheric water vapor content data 

from radiometers (e.g., AMSR2, SSM/I, GMI) to recognize polar low, and apply a 

feature extraction algorithm to localize its center. The track of polar low is determined 

from the center locations derived from SAR and radiometer observations. 

 
Index Terms– Polar low, synthetic aperture radar, radiometer 



Satellite measurement of waves and currents: SAR vs Optical sensors
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1. SAR limitations

SAR measurements of waves and currents suffer limitations due to the complexity of the imaging mechanism and
of the microwave backscatter mechanisms. More specifically, for wave retrieval, the non-linear SAR imaging process
complicates the retrieval of the directional wave spectrum, as it can produce e.g. azimuth cut-off and different types
of spectral distortions of wind sea components in the azimuth direction (Janssen and Alpers, 2006).

For current retrieval, mean Doppler velocities observed by radars and SARs include a component related to the
wave orbital motion (Chapron et al., 2005). This wave orbital component is typically of similar magnitude as the
ocean currents one aims to observe (e.g. Marié et al., 2020). To advance further, a precise separation between the
respective contributions of waves, surface current and current at depth is needed.

2. Optical imagery

Optical measurements of waves and currents can help mitigate those limitations, as they provide direct imaging
mechanism and direct measurement of the wave phase speed and its deviation due to current. As such they provide
means of validation, calibration and synergy with SAR measurements.

2.1. Optical imagery to retrieve wave directional spectrum

We highlight here some on-going work on case studies where wave directional measurements are compared be-
tween SAR Sentinel-1, optical Sentinel-2 and in-situ sensors.

In-situ measurements are obtained from an ASIS buoy (Graber et al., 2000), where directional wave spectra are
obtained from accelerometers and an array of capacitance wires (fig. 1). The spectra are processed over 10-minutes
periods centered at the time of the satellite passes (fig. 2 center).

∗Corresponding author: Nicolas Rascle, email: nrascle@ifremer.fr, tel: +33 2 98 22 45 33, postal address: IFREMER, 1625 route de Sainte
Anne, 29280 Plouzane, France
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Figure 1: Instrumented buoy BOMM (Boya Oceanogrfica y de Meteorologa Marina) deployed in the coastal North-East Pacific.

SAR images are obtained from Sentinel-1 L1B data VV in mode IW. Spectra are computed using SLC intra burst
real part cross spectrum (fig. 2 left). The expected azimuth cut-off of the SAR image is shown with the red lines
(e.g. on the displayed day, the cut-off value was 244 m). Optical images are obtained from Sentinel-2 MSI band 2
and 4 within the sunglint. The brightness spectrum is computed first, and is complemented by the elevation spectrum
computed under a tilt transfer function approximation (fig. 2 right). The singularity direction of the tilt transfer
function is shown with the red line on the brightness spectrum (Kudryavtsev et al., 2017).

Figure 2: Successful case study of East Pacific swell. Day is 11 April 2018. (Left) SAR Sentinel-1 L1B IW3 SLC intra burst vv, real part
cross spectrum, at 13:44 UTC. (Middle) In-situ buoy ASIS combining accelerometers and wired array. (Right) Optical Sentinel-2 brightness and
elevation (under tilt hypothesis) spectra, at 18:19 UTC.

The fig. 2 shows measurements for 11 April 2018 over an East Pacific location (Todos Santos Island, Baja Califor-
nia, Mexico). We note that two wave systems are present, one swell and one wind-sea. The SAR-detected spectrum

2



has a swell peak period around 11 s and an wind-sea peak period around 6− 7 s. The optical spectrum has a wind-sea
peak period about 7 − 8 s and a swell peak period barely noticeable. The wave directions are also slightly shifted.
Reproduction of those effects in numerical simulations (R3S, Nouguier, 2019) is under way within the SARWAVE
ESA project (2022-2025).

2.2. Optical imagery to retrieve wave phase speed and current

Time series of optical images can help to retrieve wave phase speed and its deviation due to current. Several strate-
gies are investigated, focusing either on sunglint or out of glint images. The wave decorrelation time is investigated
using satellite videos of the sea surface. This will provide indications of the ideal viewing geometry of optical sen-
sors dedicated to surface currents, depending on their available horizontal resolution. Confrontation with numerical
simulations (R3S, Nouguier, 2019) will be reported within the ESA DopVisSat project (2023-2024).

3. Perspectives

This work is part of an effort towards a more systematic use of optical imagery to improve understanding of SAR
imagery. Existing optical sensors like Sentinel-2 are considered, and future optical missions with different viewing
geometry are also proposed to provide systematic means of calibration and validation of waves and current radar data
(e.g the STREAM-O optical companion of STREAM-R mission EE11 proposal).
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Abstract 

Frontal features, indicating convergence along current shear boundaries and temperature 

boundaries, have often been observed by SAR imagery as enhanced lines of radar brightness. 

Conversely, the observation of marine slicks formed by convergence into narrow lines of 

reduced radar brightness indicates underlying surface flow of small eddies. Both types of 

convergence features have been observed in boundary currents such as the Gulf Stream, in 

coastal regions, and associated with islands. A highly cited study by Yoder et al. (1994) made 

use of astronaut sun glint imagery showing a linear feature in the equatorial Pacific and 

confirmed that the feature was located along a frontal boundary between warm waters and an 

upwelling zone.  In this presentation, we will discuss frontal features and eddies seen with SAR 

imagery and multisensory data related to coral-reef islands and open-ocean features in the 

western Pacific.  

 

This study is related to understanding migration patterns of native Pacific Islanders who 

populated the scattered island groups using traditional sailing techniques, primarily based on a 

detailed knowledge of navigating by stars and wave patterns.  The primary area of interest is the 

Federated States of Micronesia, centered on the recently-designated World Heritage 

archaeological site of Nan Madol, located on the island of Pohnpei. To gain understanding of the 

fundamental ocean conditions and wave patterns as well as climatic forcing events in this region 

that may have impacted navigation routes and the development of this unique archaeological site, 

we examined SAR imagery in combination with ocean currents, sea surface temperature ocean 

color, and wind products derived from satellite data.  

 

We identified a unique collection of SAR imagery from JAXA’s ALOS-1 L-band SAR mission,      

collected in disparate locations in the western Pacific. Current convergence zones of enhanced, 

bright lines in the open ocean were observed, often away from nearby islands or strong boundary 

currents, which identify zones of enhanced surface roughness. We also identified dark, 

curvilinear marine slicks, composed of biogenic films, that are well-known to serve as tracers of 

the underlying current flow, particularly eddies of various scales. To determine if the frontal 

features are associated with strong temperature fronts, current gradients and shear, or a 

combination of both,  we overly the SAR features onto coincident SST and current vector maps 

and then derive backscatter changes of the fronts in relation to surrounding ocean (Figure 1). 

 

Returning to examining Micronesia’s volcanic, coral reef island of Pohnpei, a substantial 

collection of Sentinel-1 imagery was analyzed. These data were obtained in standard beam mode 



and provided detailed views of waves and refraction patterns, along with fine scale circulation 

features, including eddies associated with the island. Wind speed measurements were derived 

using the NOAA Coastwatch SAR winds algorithm (thanks to Chris Jackson).  We will discuss 

steps taken to understand the seasonal patterns of winds, waves, and detailed island SAR features 

(Figure 2) associate with Pohnpei and an adjacent atoll. 

 

  
Figure 1. a) ALOS-1 SAR image showing enhanced convergence line. b) The linear features are traced and 

overlaid onto the sea surface temperature map of the same day, showing the alignment of the SAR feature 

along a filament; c) SAR features overlaid on the same SST map with ocean current vectors indicated.  

 

 
Figure 2. Sentinel-1 SAR image of Pohnpei, Micronesia. The enlargement on the right shows both a bright      

convergence line likely related to shallow bathymetry as well as small, anticyclonic, bright eddies related to 

flow through reef openings.  
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Abstract 

SWIM is a rotating Radar onboard the Chinese-French CFOSAT satellite providing directional wave spectra 

measurements. This sensor has been operating for 4 years and well complements Sentinel-1 wave measurements due 

to their different limitations. The loss of Sentinel-1B in December 2022 has reduced the global wave sampling capability 

with Sentinel-1 constellation and highlighted the relevance of combining these wave measurements. The present study 

uses the Sentinel-1 Level-2 OCN products from the Wave Mode acquisition mode and the SWIM Level-2P products 

distributed by ESA and CNES/CLS, respectively. The first part highlights the two sensors complementarities in terms of 

spatial coverage, sensitivity to varying wave regimes and directional limitations. The second part focuses on their 

commonly observed wave regimes, for waves with peak wavelength within ~200-500m. The swell measurement 

performances are assessed using model and in situ measurements and also co-locations between Sentinel-1 and SWIM 

measurements (also known as cross-overs in altimetry). This involves both static and dynamic co-locations where waves 

are propagated using a simple linear wave propagation model over a few hundred kilometers to maximize the number 

of co-locations. These comparisons show significant differences and suggest a need to propose an inter-calibration in 

order to propose a global and combined swell measurement product. 

1. Introduction 

Ocean surfaces are widely imaged by satellite altimeters providing a dense global coverage with more than 8 altimeters 

flying operationally today and whose wave products are distributed by the Copernicus Marine Service. These satellites 

only capture the significant wave height, the integrated energy of the co-existing wave systems. For long, the only sensors 

able to provide a more detailed sea state description have been Synthetic Aperture Radars (SAR) flying. The SWIM 

instrument, flying onboard the CFOSAT mission, carries a nadir pointing altimeter on top of its rotating radar and has 

provided a different point of view on the sea state description [1] with respect to Sentinel-1 with whom it has been 

operating since its 2018. They both observe the ocean surface and can image the wave spectra at global scale using a 

synthetic and rotating Radar. Yet, their sensing technology and their global coverage have huge impacts on their 

capability to observe waves in varying sea state conditions.  

2. Data  

The present study uses the Sentinel-1 Level-2 OCN products acquired in Wave Mode and the SWIM Level-2P products. 

They are distributed by ESA and CNES/CLS, respectively. They are also compared to directional wave spectra estimation 

provided by WAM numerical wave model outputs estimated at SWIM measurement's location. Finally, they are also 

compared to swell partitions extracted from directional wave spectral measurements from in buoys provided by the 

NDBC network (National Data Buoy Center). 

 

Figure 1: Co-located spectra observed with SWIM 10° beam (left), estimated with WAM and observed with Sentinel-1 

3. SWIM and S1 specificities and complementarities for observing wave spectra 

a. Wave classification 

To simplify the analysis, the wave conditions are split in 3 different sets of waves according to their peak wavekength: 

[0-200m] corresponding to wind sea dominated sea states (Class 1), [200-500m] to a mix of long wind seas and swells 

(Class 2) and [500-800m], to very long swell (Class 3).  



 

Figure 2: Percentage of occurrence and geographical distribution of the three wave classes according to WAM wave 

partitions: Class 1 on the left, Class 2 in the middle and Class 3 on the right for the time period April-May-Jun 2021.  

b. SWIM and SWIM limitations 

 

Figure 3: Geographical distribution of Sentinel-1 (left) and SWIM (right) depicted using a 2D histogram of the number of 

valid partitions acquired at global scale for April-May-Jun 2021. 

Compared to SWIM, S1 misses some areas mainly near coasts and North Altlantic due to the change in acquisition mode 

(switching to Interferometric Wide Swath mode - IW). 

The analysis of the SWIM and S1 data over the various wave classes 

indicates that for SWIM:  

- The wave sampling for the longest waves has been limited in the CNES 

L2 SWIM products to 500m. This threshold was chosen in order to avoid 

contributions from non-wave phenomena in the ocean waves spectra, 

possibly. The WAM analysis, indicates that this represents ~10% of the 

total number of wave partitions. Yet, the longest swell are also the ones 

associated with most intense storms. They can also greatly affect the 

sensing capabilities from Doppler altimeters or SWOT (Sea State Bias [3]). 

- A higher speckly in the along-track direction, which required a very 

specific processing in order to compensate for the increased noise and 

energy in this wave spectra region. 

- The presence of so-called “parasitic peaks”. They correspond to energy 

peaks becoming relevant whenever looking at wave height spectra while 

they are relatively weak in SWIM L2P products provided as slope spectra. 

They are associated with low Signal-to-Noise ratio. In Figure 4, they appear 

as outliers with a strong difference between the slope- and the height-

estimated peak wavelength. For the other partitions, an average bias of  

15 m exists. 

 

For Sentinel-1, the main limitation lies in the azimuthal cut-off which prevents from imaging waves with azimuthal 

wavelength shorter than 200m on average. Overall, the SWIM and Sentinel-1 appear best suited for the Classes 1-2 and 

Classes 2-3, respectivly. The rest of the study focuses on the capability to accurately image wave for this common Class 

2 wave category. 

Figure 4: Scatterplots of peak wavelength 

estimated from wave height spectra wrt. 

estimation from slope spectra for a given 

wave partition domain (left) and histogram 
of the differences. Only the SWIM most 

energetic wave partition is considered here. 



4. Merging SWIM and S1 swell measurements 

a. Using S1 classification 

S1 wave mode acquisition consists in high-resolution 20x20km imagettes that can be classified in metocean phenomena [4]. The 

estimation of SWIM performances wrt. WAM has demonstrated that co-localized and classified Sentinel-1 imagettes could be used to 

identify the metocean phenomena degrading SWIM measurements: rain cells, low winds and biological slicks  (sea ice not considered). 

 

Figure 5: Illustration of the 10 metocean classes of TenGeo-P [4]  

b. S1 vs. SWIM 

Using short propagation SWIM and S1 observations (<48h) 

from their observation location, wave partitions can be 

compared. This is shown her on Figure 6. A significant  under-

estimation of the SWIM partition peak wavelength is visible 

wrt. S1  (WV1 and WV2 measurements are mixed). This may 

be explained by the fact that the S1 azimuth cutoff limitation 

is not duplicated on SWIM spectra (-24m). This can also be 

partly explained that the SWIM partition peak wavelength is 

estimated from the slope spectra while S1 is estimated from 

the wave height spectra (cf. Figure 4). 

 

 

 

 

 

 

a. S1 and SWIM vs. Buoy 

Similarly, comparisons between S1, SWIM and buoys show a consistent difference for the peak wavelength, possibly due 

to the slope- versus wave height estimation. 

5. Conclusions 

 

Will be finished later 
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1. Introduction 
Ship wakes are produced by the interaction of the ship’s hull with the ocean water and are result of multiple 
interacting wave systems closely beneath and on the ocean surface. The ship wake signatures in SAR im-
agery consists of various components. The most frequently encountered wake components are Kelvin wake 
arms, V-narrow wake arms and two parts of the turbulent wake: the near field and the far field [1]. The 
detectability of these four most important wake components in SAR imagery is influenced by several phys-
ical variables, which are in the following called influencing parameters. The influencing parameters can be 
categorized into ship properties, environmental conditions and SAR acquisition settings.  
 
In a series of preceding studies of the authors [1, 2], the characteristics of the effects of influencing param-
eters on the detectability of individual wake components have been modelled using machine learning, cat-
egorized, and contrasted against the published state-of-the-art. For the latest study [3], the list of the satellites 
was extended and the detectability of wake components was investigated in terms of different radar fre-
quency bands (C-Band and X-Band SAR) and different orbit altitudes (i.e. slant ranges). 
 
This study summarizes the method and the results of the preceding studies [1,2,3] and the application of the 
results to the actual task of wake detection is demonstrated. The demonstration shows that the developed 
models can be applied to control the precision performance of wake detectors and to estimate vessel velocity 
with an accuracy coinciding with other published methods [4]. 

2. Materials and Method 
The studies are based on four different SAR missions (Table 1). The ground truth wake samples listed for 
each sensor were created by a manual inspection procedure. 
Table 1: Summary of wake component datasets 

Sensor name TerraSAR-X 
(TSX) 

CosmoSkymed 
(CSK) 

Sentinel-1 
(S1) 

RADARSAT-2 
(RS2) 

Frequency band /radar wavelength [cm] X / 3.1 X / 3.1 C / 5.6 C / 5.6 
Orbit-Altitude [km] 514 619 693 798 
Approx. slant range [km] at 30°/50° incidence angle 593 / 800 715 / 963 800 / 1078 922 / 1242 
Acquisition modes /  
product types 

SL, SM /  
MGD 

HIMAGE /  
DGM 

IW /  
GRDH 

MF, F, S /  
SGF 

Number of total wake samples  
(HH / VV) 

2881 
(2429 / 452) 

94 
(94 / 0) 

618 
(0 / 618) 

407 
(407 / 0) 

 
The detectability of each of the four wake components was modelled for each of the four sensors using the 
support vector regression (SVR) method. The length of each wake component is used as indicator for the 
wake component’s detectability. The preceding studies have an intersecting set of five influencing parame-
ters, which are listed in Table 2.  
 
The SVR models predict which wake component lengths are expected depending to the conditions defined 
by the influencing parameters. The predicted wake component lengths are then linearly normalized between 
a minimum and maximum length boundary to obtain a measure of detectability with uniform scale. The so-
called detectable length metric (DLM) for a sensor 𝑠 and a wake component 𝑤 is: 
𝐷𝐿𝑀𝑤,𝑠(𝑥1, … , 𝑥5) = (𝑓𝑤,𝑠(𝑥1, … , 𝑥5) − 𝑙𝑤

𝑚𝑖𝑛) |𝑙𝑤
𝑚𝑎𝑥 − 𝑙𝑤

𝑚𝑖𝑛|⁄   (Eq. 1) 
where 𝑥1, … , 𝑥5 defines the five influencing parameters and 𝑓𝑤,𝑠 the SVR model. 𝑙𝑤

𝑚𝑖𝑛 is the minimum 
length boundary and 𝑙𝑤

𝑚𝑎𝑥 maximum length boundary, both depending on the respective wake component. 
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The compositions of the created SVM models are analyzed and compared in order to derive statements on 
wake component detectability. A measure of the detectability models’ uncertainty is provided to support the 
derived statements.  
Table 2: List of the five influencing parameters with descriptions 

Nr 
𝒙𝒊  

Parameter name Description Value range 

xi
min xi

max 

𝑥1  AIS-Vessel-Velocity Velocity of the vessel derived from AIS messages interpolated to the image 
acquisition time 

1 10 

𝑥2  AIS-Length Length of the corresponding vessel based on AIS information 5 35 
𝑥3  AIS-CoG The Course over Ground (CoG) based on AIS information relative to the radar 

looking direction (0° means parallel to range, 90° mean parallel to Azimuth). 
0 90 

𝑥4  Incidence-Angle Incidence angle of the radar cropped to TSX’s full performance value range 20 45 
𝑥5  SAR-Wind-Speed Wind speed estimated from the SAR background around the vessel using the 

XMOD-2 (X-band) and CMOD-5 (C-band) geophysical model functions 
2 9 

 
The uncertainty measure quantifies, whether the models’ compositions are learned systematically or ran-
domly. The analysis is based on heatmaps as shown exemplarily in Figure 1. This example heatmap provides 
insight into the dependency of detectability of Kelvin wake arms on three influencing parameters describing 
ship properties [1, 2].  
 

 
Figure 1: Detectability heatmaps for accumulated port and starboard Kelvin wake arms based on AIS-Vessel-Veloc-
ity, AIS-CoG and from left to right AIS-Length with a) 20 m, b) 100 m, and c) 300 m. 
The comparison between models of two SAR sensors 𝑠1 and 𝑠2 is based on integrated differences in detect-
ability [3]:  
∆𝐷𝐿𝑀𝑤,𝑠1,𝑠2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐷𝐿𝑀𝑤,𝑠1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐷𝐿𝑀𝑤,𝑠2
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (Eq. 2) 

with 
𝐷𝐿𝑀𝑤,𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

1

Δ𝑥1…Δ𝑥5
∫ … ∫ 𝐷𝐿𝑀𝑤,𝑠(𝑥1, … , 𝑥5) 

𝑉
𝑑𝑥1 … 𝑑𝑥5  (Eq. 3) 

where Δ𝑥𝑖 = 𝑥𝑖
𝑚𝑎𝑥 − 𝑥𝑖

𝑚𝑖𝑛 with [𝑥𝑖
𝑚𝑎𝑥, 𝑥𝑖

𝑚𝑖𝑛] is defined in Table 2. The multidimensional integration over 
the five-dimensional feature space is restricted by the volume 𝑉 = [𝑥1

𝑚𝑎𝑥, 𝑥1
𝑚𝑖𝑛] × … × [𝑥5

𝑚𝑎𝑥, 𝑥5
𝑚𝑖𝑛] ⊆

ℝ5. 

3. Results 
A summary of statements derived from studies [1, 2, 3] are summarized in The demonstration estimates that 
the total error of this method is RMSE=2.71 m/s 
Table 3. It should be noted the statements from [1, 2] are revised in this study, as a measure for SVR models’ 
uncertainties was developed in [3] and is additionally considered here. 

4. Applications 
The listed statements contribute primarily to the fundamental research of imaging and detection of ship 
wakes in SAR. The presented method for modelling of wake component detectability by SVR models, 



consequently and systematically takes all selected influencing parameters into account. Due to this com-
pleteness, a new opportunity of applying the detectability models to the task of wake detection arises. For 
this purpose, a simple DeepLearning-based wake component detection system was developed. The applica-
bility of the wake detectability models to wake detection is then demonstrated by two independent opera-
tions: 

1. The sensitivity of wake detection systems can be controlled by the detectability models to increase 
precision while mainly maintaining the recall. 
The demonstration estimates that precision is increased by ~6% while recall only is decreased by 
~3% 

2. After detection of wake components by wake detection systems a reversion of the detectability 
models can be applied to estimate the ship velocity using the probability of detection 𝑃𝑜𝐷 as sub-
stitute for 𝐷𝐿𝑀𝑤,𝑠|𝑙𝑤,𝑠

𝑚𝑎𝑥 − 𝑙𝑤,𝑠
𝑚𝑖𝑛| + 𝑙𝑤,𝑠

𝑚𝑖𝑛 in reversed model: 
𝑓𝑤,𝑠

𝑥1 −1
(𝐷𝐿𝑀𝑤,𝑠|𝑙𝑤,𝑠

𝑚𝑎𝑥 − 𝑙𝑤,𝑠
𝑚𝑖𝑛| + 𝑙𝑤,𝑠

𝑚𝑖𝑛 , 𝑥2, 𝑥3, 𝑥4, 𝑥5) = 𝑥1 (Eq. 4) 
The demonstration estimates that the total error of this method is RMSE=2.71 m/s 

Table 3: Summary on detectability of four wave components. Parameters with identical influence are marked by grey 
color 

Influencing  
parameters 

Summary on detectability four wave components 
wake component detectability: “↑”: better, “≈ “: hardly influenced 
near-hull turbulence turbulent wakes Kelvin wake arms V-narrow wake 

Vessel speed  ↑ for faster moving vessels ↑ for faster moving 
vessels 

↑ for faster moving 
vessels 

↑ for faster moving 
vessels 

Vessel length ↑ for larger vessels ↑ for larger vessels ↑ for larger vessels ↑ for larger vessels 
Vessel moving  
direction 

↑ for vessels moving 
parallel to range 

≈ by vessels’ moving 
direction 

↑ for vessels moving 
parallel to azimuth 

↑ for vessels moving 
parallel to azimuth 

Incidence angle  ↑ for larger incidence 
angles, when ship speeds 
are at least moderate 

↑ for lower incidence 
angles 

↑ for lower incidence 
angles 

↑ for lower incidence 
angles 

Local  
wind speed 

↑ for lower wind speeds ↑ for lower wind 
speeds 

↑ for lower wind speeds ↑ for lower wind 
speeds 

Sea state  
wave height  

≈ by wave heights ≈ by wave heights ≈ by wave heights ≈ by wave heights 

Sea state  
wave length  

↑ for longer wavelengths, 
when ship speeds are at 
least moderate 

↑ for shorter 
wavelengths 

↑ for longer 
wavelengths 

↑ for longer 
wavelengths 

Sea state  
Wave propagation 
direction 

↑ for wave directions 
parallel to the vessel’s 
movement 

↑ for wave directions 
parallel to the 
vessel’s movement 

↑ wave directions 
parallel to the vessel’s 
movement 

≈ by wave 
propagation directions 

Local  
Wind direction 

≈ by wind direction ↑ for wave directions 
orthogonal to the 
vessel’s movement 

≈ by wind direction ↑ for wave directions 
orthogonal to the 
vessel’s movement 

SAR slant ranges ≈ by slant ranges ≈ by slant ranges ↑ for shorter slant ranges ≈ by slant ranges 
SAR radar  
frequency 

≈ by radar frequency ≈ by radar frequency ≈ by radar frequency ↑ for X-band  
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SeaSAR2023 Workshop Abstract: “Open and Reproducible Science: The Role of Computing 
Platforms for Research and Applications that use SAR” 

David Arthurs, Managing Director, Polar View 

Open Science is a movement to make the entire research process more accessible and reproducible, 
including input data, analysis methods, results, and the dissemination and reception of those results.  
Its benefits include: 

 Increased Transparency – all aspects of the research are explained and can be reproduced 
for better understanding by others (and even to help the original researcher remember in 
the future). 

 Better Peer Review – others can replicate and test the research to ensure its accuracy and 
veracity. 

 Amplified Impact and Efficiency – others can build on the research to augment its impact in 
subsequent work.  The tendency to ‘reinvent the wheel’ is reduced. 

 Improved Handling of Complexity – multiple researchers, working together or separately, 
can contribute to tackling difficult problems. 

While science has always espoused the dissemination of methods and results so that they can be 
evaluated and tested by others, in many fields of science there has emerged a so-called “replication 
crises” in which it is asserted that the results of many scientific studies are difficult or impossible to 
reproduce.  This situation is an impediment to the very underpinnings of the scientific method. 

Technology and standards have an important and increasing role to play in supporting open and 
reproducible science at each stage of the research process: 

 Collaboration – Forums, conferencing, chats, code sharing, and other tools allow researchers 
to work together, synchronously or asynchronously, regardless of their location or time-
zone. 

 Input Data – The FAIR data principles are that data is Findable, Accessible, Interoperable, 
and Reusable.  FAIR data helps researchers obtain and use the inputs to their work and they 
pass those benefits along when they subsequently make their results FAIR. 

 Analysis – While there has been significant progress in making research data FAIR, efforts to 
do the same for analysis methods and code are only just beginning.  Interactive 
development environment tools such as Jupyter Notebooks enable researchers to combine 
code and results with explanations. 

 Results – The importance of the management of research results is starting to be recognized.  
Too often, research results are kept in a box under the researcher’s desk and are eventually 
lost to science or require expensive efforts to recover.  Data needs to be properly archived 
for long-term preservation and assigned a Digital Object Identifier (DOI) so that it can be 
discovered, and the researcher given appropriate credit by others.  All data and code should 
be made publicly available in a form that others can find, understand, and use them. 

 Dissemination and Communication – Research will have an impact only if others are aware 
of it.  Dissemination of research results can take many forms depending on the intended 
audience, which may include other researchers, decision makers, or the public. 

Increasingly, computing platforms are emerging that incorporate tools to assist researchers in 
participating in all of the facets of open and reproducible science.  The Polar Thematic Exploitation 
Platform (Polar TEP) is an example of such a platform. 



ESA has developed a series of seven TEPs on different subjects to provide insight into how our 
oceans, atmosphere, land, and ice operate and interact as part of an interconnected earth system by 
exploiting the unprecedented flow of high-quality global data on the state of our planet, combined 
with long-term Earth Observation (EO) archives, in-situ networks, and models. Polar TEP was 
developed to address the particular needs of the polar community. 

Polar TEP provides a complete working environment where users can access algorithms and data 
remotely to obtain computing resources and tools that they might not otherwise have and avoid the 
need to download and manage large volumes of data. This new approach removes the need to 
transfer large Earth Observation data sets around the world, while increasing the analytical power 
available to researchers and operational service providers. Polar TEP provides new ways to exploit 
EO and other large datasets for research scientists, industry, operational service providers, regional 
authorities, and policy analysts. Polar TEP provides: 

 Collaboration 

Polar TEP provides capabilities for researchers to share algorithms and collaborate with others in 
a user forum. 

 Data Discovery 

Polar TEP makes satellite and other polar data easily accessible for browsing or analysis within 
the cloud or within the user’s own environment. The infrastructure takes care of the complexity 
of handling satellite imagery archives and makes the data available via web services. Users can 
instantly access petabytes of Sentinel, Landsat, and other Earth observation imagery, both 
historic and the latest acquisitions.  Users can also bring their own data or connect to other data 
repositories to meet their data needs. 

SAR data is very important in the polar context.  Polar TEP has the complete archive of Sentinel-1 
data and is in the process of adding CEOS ARD compliant versions of Radarsat Constellation 
Mission (RCM) data. 

 Interactive Development Environment 

Polar TEP offers a managed JupyterLab instance with curated base images. The platform 
provides different flavors of computational resources and a network file system for persistent 
data storage. Headless notebook execution is supported. 

 Machine Learning 

Polar TEP has implemented the MLflow platform to support machine learning activities. MLflow 
manages all stages of the machine learning lifecycle, including experimentation, reproducibility, 
deployment, and a central model registry. 

 Execution Environment 

Docker containers are used to provide processors with a separate custom environment having 
minimal execution overhead. The computing resources used by the execution environment are 
scaled to the current demand. 

 Algorithm Hosting Environment 

Users can host their algorithms within the Polar TEP environment, making them available for 
others to invoke on-demand using the parameters and area of interest the end-user chooses.  It 



is possible to implement the algorithms under a pay-for-use model where the algorithm 
developer shares in the revenue from end-users. 

 Results Dissemination and Story Telling 

Polar TEP provides tools to communicate analysis results to other researchers, decision makers, 
or the public. 

Polar TEP is an integral part of the wider polar data ecosystem, contributing to data interoperability 
and fostering the use of information about the polar regions to support environmental protection, 
safety, and sustainable economic development. 

Figure: Polar TEP Support for Open Science 
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The Wadden Sea on the continental North Sea coast is the World’s largest coherent intertidal area and extends over an area of 
about 4700 km², reaching from the Dutch coast in the West to the Danish coast in the north. Most parts of the German part of 
the Wadden Sea are dominated by bare soils consisting of sandy and muddy sediments, whose actual distribution depends, 
among others, on dynamic forces induced by the tides and by wind and sea state. In contrast, vegetation such as sea grass 
stabilizes the upper sediment layer and reduces the hydrodynamic energy of tides and waves; therefore, sea grass meadows 
have great influence on the local sediment distribution. Being UNESCO World Heritage since 2011 the Wadden Sea forms a 
large natural ecosystem with a high biodiversity, and since it is increasingly exposed to anthropogenic threats such as (over-) 
fishing, high nutrient loads, oil and gas production, or tourism, according to national and international directives a continuous 
monitoring is mandatory. However, most areas are difficult to access by boat, foot or land vehicles, and in-situ observations 
are sparse, which makes remote sensing techniques an important and powerful tool for the mapping of key parameters. 
 
Two areas of interest were identified on the German North Sea coast, within the National Park “North Frisian Wadden Sea”, 
which represent areas of different sediment distribution and of high morphodynamics, i.e., strong erosion and accretion along 
the tidal creeks and channels. In addition, seagrass meadows and bivalve beds may be encountered, both being subject to 
frequent monitoring efforts by local (National Park) agencies. The two areas of interest are marked in the map shown in Figure 
1. The aim of our studies was to demonstrate the way, in which monitoring programs may benefit from frequent synthetic 
aperture radar (SAR) observations of the marine coastal environment. 
 
 

 
Figure 1. Map of the German North Sea coast, with the three National Parks (“Lower Saxon, Hamburg, and Schleswig-Holstein 
Wadden Sea”) marked in light blue. The two areas of interest of this study are marked by the red rectangles. 
 
 
We analyzed a great deal of SAR images acquired over the German part of the Wadden Sea by the L-, C-, and X-band SARs 
aboard ALOS-2, Radarsat-2 and Sentinel-1, and TerraSAR-X, respectively. Using this wide range of multi-frequency / multi-
polarization SAR data we demonstrate which combinations of radar band and polarization are best suited for a classification of 
different Wadden Sea surface types, including sandy and muddy sediments, sea grass meadows, and bivalve beds. New 



parameters, based on a decomposition of the complex SAR data, were used as input into a UNet-based semantic segmentation 
network with a texture-enhancement module to classify intertidal sediments and habitats. Here, a comparative study revealed 
that the combination of different radar bands yields best results [1]. 
Taking advantage of the high temporal coverage of the German North Sea coast by the SAR-C aboard the Sentinel-1 satellites, 
we generated digital elevation models (DEMs) of intertidal flats using the waterline method. The algorithm developed is based 
on a method for semi-automated waterline detection presented in [2], and it uses the so-called “Edge-Drawing” method [3]. 
For each image acquisition, absolute water levels derived from interpolated tide-gauge data were used to generate contour lines 
from the extracted waterlines. The resulting contour maps were then combined and interpolated into a DEM. Comparing DEMs 
for the spring of 2017 and the spring of 2020 (left and middle panels of Figure 2, respectively) allowed identifying areas of 
strong sediment loss (erosion) and gain (accretion), the former even resulting in a cut through an elongated sand flat. These 
results are shown in the right panel of Figure 2. 
 
 

 
Figure 2. DEMs (28 km × 18 km) of a part of the Wadden Sea on the German North Sea coast, derived from Sentinel-1  
SAR-C images of (left) spring 2017 and (middle) spring 2020. The right panel shows the difference of both, i.e., DEM2020   ̶ 
DEM2017 . 
 
 
The demonstrated method proved its usefulness for the identification of local hotspots of morphodynamic changes; however, 
it still requires manual fine-tuning of some parameters to generate optimal results. In another effort, therefore, we built a neural 
network for an automated detection of waterlines on Sentinel-1A/B SAR-C imagery. Our neural network is capable of 
segregating water from exposed intertidal flats at high spatial resolution (Figure 3). 
 
 

 
Figure 3. Automated classification of exposed intertidal flats by a neural network. Left: part of a Sentinel-1A SAR-C image of 
the German Wadden Sea acquired on 19 May 2020. Middle: manually generated land/water mask used as additional input; 
yellow: land; blue: open sea; green: potential intertidal flats. Right: resulting prediction of the neural network (classification). 



The neural network is designed as an image-to-image network and uses SAR images and an ordinary land/water mask as input 
(left and middle panels of Figure 3, respectively). In order to detect large structures and at the same time, to preserve the high 
spatial resolution, it consists of two stages: the first stage generates a low-resolution (640 m × 640 m) allocation map, in which 
areas are classified that contain either mostly land, mostly water, or approximately equal parts of both. This allocation map is 
added as input to the second stage, in which islands and tidal channels are allocated. Within the second stage, only fractions of 
the original radar image are processed, thereby reducing the overall processing time, but also resulting in an accurate 
segregating of water and exposed intertidal flats at full SAR resolution (10 m × 10m, see the right panel of Figure 3). 
 
Our network allows simplifying the SAR image analysis significantly, as only minor post-processing of the obtained results is 
required. However, further studies on its sensitivity to weather (wind) conditions are required. Moreover, an operational use of 
SAR data from wider coastal areas is not yet possible, because of a lack of labelled data. 
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Abstract 
The Copernicus program [1] and particularly Sentinel-1 [2] are among the largest Earth Observation SAR data 
providers, serving an ever-increasing number of services, users, and applications. A key aspect of the program is the 
constant provision of quality data, which requires long term engagement to carefully monitor, preserve, and even 
improve the system performances.  
These tasks are mainly carried out within the SAR Mission Performance Cluster (SAR MPC), an international 
consortium of SAR experts in charge of the continuous monitoring of the SAR instruments status and of the L1 and 
L2 products quality. The SAR MPC is responsible of detecting any potential issues and implementing the necessary 
actions to ensure that no data quality degradation occurs for the users [3].  
This paper provides an update on the monitoring and the actions implemented by the SAR MPC during the 2022 for 
what concerns the oceanographic applications. It is then a summary of the main elements of the Sentinel-1 Annual 
Performance Report for 2022 [5], with the objective to initiate a dialogue with the SAR Oceanographic community 
attending to the SeaSAR 2023 workshop. 
As the end of mission for S-1B has officially been announced [4] after it suffered an anomaly resulting in its 
unavailability since the 23rd December 2021, this paper concerns only the performances of S-1A. The main results 
highlighted in this paper are the following: 
 
Instrument status:  
The gains and phases of the 280 individual Transmit Receive Modules (TRMs) composing the antenna are monitored 
via the RFC products to look for instrument aging or elements failures. Although this type of damage has occurred in 
the past, prompting for an electronic reconfiguration, the antenna status of S-1A has been stable throughout the 2022. 
The instrument status is monitored via internal calibration products, describing the evolution of the product gain (PG) 
in time, and via noise products. The instrument pointing is also monitored by means of the Doppler Centroid estimates 
annotated in the L1 products. 
The analysis of RFC and Internal Calibration products shows that S-1A instrument is stable. No major instrument 
events have been recorded during 2022. No quality degradation associated to issues happened in previous years is 
observed in S-1 products.  
The analysis of Noise products shows that the instrument noise level is stable.  
S-1 interferometric performances in terms of interferometric baseline, burst synchronization and instrument pointing 
are within the mission requirements. During the month of September 2022 collision avoidance manoeuvres caused an 
increase in the interferometric baseline and burst synchronization error. 
S-1A DC is showing DC jumps up to 30 Hz when the STT configuration changes. The issue is continuously monitored 
and, in case the DC jumps get worse, could lead to the execution of a new STT alignment campaign during 2023. 
 
 
Radiometric accuracy:  
The instrument is radiometrically calibrated both in absolute and relative terms. Acquisitions over a calibration site 
comprising of both transponders and corner reflectors allow for the assessment of the absolute calibration constant. 



The relative calibration is performed by considering acquisitions over a distributed target such as the rainforest, over 
which the gamma profile is assumed to be flat with respect to incidence angle.  
The radiometric performance of S-1A has been monitored and the radiometric accuracy has been determined for IW 
mode DV polarization using point targets of the DLR calibration site. During 2022, the overall mean and standard 
deviation for the absolute calibration factor has been derived to be -0.08 dB ± 0.24 dB which includes the observation 
of both polarizations (VV and VH) and all three sub-swathes (IW1, IW2, and IW3). Including all error contributions, 
an absolute radiometric accuracy for the IW mode of 0.322 dB (1σ) could be verified. Furthermore, the radiometric 
performance for IW mode HH polarization has been monitored using CRs over Australia. With respect to the expected 
RCS, a small bias of –0.23 dB has been found with a standard deviation of 0.20 dB. 
The channel imbalance in amplitude and phase has been derived from DLR transponder measurements. For both SAR 
instruments, the VV polarization channels show, in average, slightly higher values than VH polarization channels with 
remaining biases of 0.14 dB. The phases are also well balanced with remaining biases below 2 degrees. The co-
registration of the IRF peaks for both polarizations show deviations below 0.1 m in average. The cross-talk of S-1A 
derived from DLR corner reflector measurements are in average -42.6 dB which confirms the very good quality 
concerning the separation of the co-and cross polarization channels of both SAR instruments. 
 
 
Updates on the S-1 Instrument Processing Facility (IPF): 
On 23rd March 2022, the IPF was updated for IPF v3.5.1, the most relevant changes are: 
o Level 1 content: 

▪ Correction of the misalignment between the elevation antenna pattern and the annotated thermal noise 
vector 

▪ Reduction the number of false positives in RFI time-domain detection 
▪ Solving of inconsistency in the application of the results of the RFI pre-screening 

o Level 2 content: 
▪ Implementation of a new algorithm for TotalHs computation 
▪ Review of the oswQualityFlag estimation (based on machine learning algorithm) 
▪ Rescalling of rvlNRCS 
▪ Wind inversion provided on the IceMask 

 
For what concerns the RFI detection and mitigation: The number of Level 1 and Level 2 products impacted by RFI is 
reduced, however this process does not remove 100% of them. The number of products impacted by RFI before 
activation of the correction is not known with accuracy. However, since activation of the correction, the SAR processor 
flags around 20% of the products as being impacted by RFI signal on noise echo (even if not visible degradation on 
the product was observable). Furthermore, a systematic visual inspection of the products allows to assess that less than 
1% of the products are impacted by residual RFI.  
 
  
 
Level 2 Ocean Wind (OWI) 
No major changes occurred in 2022 on OWI products for TOPS and SM modes acquisitions. Since the 18th May 
2022, the products are generated using ECMWF wind forecast with a time step of 1hour instead of 3hours and a grid 
spacing of 0.1 degrees instead of 0.125 degrees. This increase of spatial and temporal resolution was not aimed to 
change the statistical performances of the Wind (OWI) measurement but may improve the performances on some 
specific products. 
 
Level 2 Ocean Swell (OSW) 
The OSW product is provided only for WV and SM modes (however the number of products acquired in SM mode is 
not sufficient to perform any geophysical validation).  Since June 2021, an update of the instrument configuration for 
the wave mode beam 2 (WV2) allowed to introduce a significant improvement in significant wave height retrieval for 
this beam. Since March 2022, a new quality flag of the swell inversion is introduced allowed to classify the 
performances into five categories (“very good”, “good”, “medium”, “low”, “poor”). Since June 2022, additional 



variables in OSW products provide the Total HS derived from machine learning method. Before this date, the variables 
were not populated. 
 
Level 2 Radial Velocity (RVL) 
The performances of the RVL products provided to end users did not evolve significantly in 2022. The Sentinel-1 
Level 2 Doppler centroid anomaly (DCA) and radial velocity (RVL) measurements are currently coloured by the 
AOCS derived Doppler frequency. The predicted Doppler centroid (DC) frequency computed from the downlinked 
quaternions does not reflect the actual DC frequency as measured by the SAR. This prevents the current version of 
the Level 2 processor to provide calibrated DCA and RVL estimates. However, promising results are achieved off-
line using restituted attitude (RESATT) estimated from calibrated Gyro data. A post-processing approach has been 
implemented as part of the "Copernicus Sentinel-1 RVL Assessment” project. The results are currently under 
validation. 
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Abstract. The Sentinel-1 (S1) ground range detected (GRD) extra-wide (EW) swath data, particu-
larly in the cross-polarization channel are strongly affected by thermal noise. This particular type of
noise not only reduces the data interpretability and quality spatially but also troubles the creation
of a clean and consistent time series of backscatter, which limits the full exploitation of the images
in oceanographic applications. Especially, the time series applications on the GRD images in the
Google Earth Engine (GEE) platform, which even though are denoised using the European Space
Agency (ESA)-provided calibrated noise vectors, residual noises are still significant. Although the
previously developed methods have shown an enhancement in the quality of the images, they are
not yet feasible to be applied to the images in the GEE. The scope of this paper is therefore to
present a novel method based on a deep-learning model with a U-Net Convolutional Neural Network
(CNN) architecture for effectively reducing such noises from the S1 images in an automated way
with competitive results with the conventional methods and with applicability in GEE.

Introduction. The Sentinel-1 (S1) mission with the open data policy, global coverage, improved
revisit time, and rapid data dissemination offers a wide range of possibilities for monitoring the earth’s
surface and emergency management. The extra-wide (EW) ground range detected (GRD) products
of the S1 images are also useful for generating high-resolution ice charts and understanding the long-
term effects of climate change, and planning for a sustainable future. Despite the usability of the S1
EW swath images for oceanographic applications, they are affected by thermal noise, particularly
in the cross-polarization channel, which restricts the application of these images. Therefore, precise
thermal noise correction of the EW images in the cross-polarization is essential for acquiring useful
information from S1 data. These noise effects can be reduced using the ESA-provided noise vectors.
Although the denoising process improves the image quality, the residual noise is still significant in
denoised images. Figure 1a and 1b show an intensity image of the S1 HV polarization in the EW
swath mode and the corrected image using the ESA-provided noise vector, respectively.

Therefore to remove the noise from the EW data using the ESA-provided vectors, which is the
preferable approach, a modification should be applied to the given noise information. A number of
different approaches have addressed this problem for instance by proposing a quadratic objective
function to model the mis-scale of the provided noise field using a least-squares solution [1], an
effective denoising method, which finds the optimal scaling factors to modify the provided noise
vectors to correct the additive [2] and remove the multiplicative noise [3]. Although these methods
enhance the quality of the images, it is difficult or unfeasible to apply to the images ingested in the
Google Earth Engine (GEE) [4, 5]. Since the noise vectors are lost in GEE and the thermal noise
removal has been carried out using the ESA-provided vectors, the residual thermal noise causes
difficulties in the time-series analysis in oceanographic applications [6]. To address this issue we
propose a novel and efficient method, which provides the possibility of efficient thermal noise removal
from the GRD images in GEE, without dealing with complex parameter optimization for each specific
image. Utilizing a convolutional neural network (CNN) architecture called the ”U-Net” [7], we
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propose a method for thermal noise removal from the S1 GRD images, which has been recently used
for image denoising and achieved good performance [8, 9, 10, 11].

Implementation Details. The most common CNN approaches to denoising require noise-free
(clean) ground truth images for the training of the network. As such images from the S1 EW are not
available, we employ the method presented in [3] with some modifications. We apply the method to
more than 30 HV-polarized EW GRD images of S1 with the IPF after 2.9.0 over the Atlantic ocean,
then choose 11 scenes with the best improvement and use eight of them as training and validation,
and the rest as test datasets. We train our model using randomly selected image patches with the
size of 256×512 pixels cropped with the overlap of 100 and 250 pixels in the azimuth and the range
direction, respectively, and a batch size of 32. We use 75% of the patches (14421) as training data
and the rest (4807) as a validation set for evaluating the performance of our model. The network is
trained for 200 epochs, by randomly shuffling the training dataset before each training epoch. The
output of the model in each epoch is compared to the corresponding clean ground truth patch using
MSE loss. Fig. 1c shows the proposed U-net network to accomplish this denoising task. Our model
is implemented in Python 3.8.10 using the Keras application programming interface (API) running
on the Tensorflow 2.5.0 framework.

(a) (b)

(c)

Figure 1: (a) S1 EW image in HV polarization (linear unit) without noise correction, (b) corrected using the ESA-
provided noise vector.

Results. We evaluate the performance of the model on a hold-out test set, which includes three
sets of noisy and clean images. Figure 2 shows the noisy, predicted, and clean for one of the images.
Comparing the noisy image with the predicted (denoised using our method) one shows that the model
has significantly removed the stripes and achieved a visually pleasing quality of the image. The peak
signal-to-noise ratio (PSNR) value for this image is 36.67 dB, and the structural index similarity
(SSIM) value is 0.93. The experimental results demonstrate the effectiveness of our proposed method
in reducing the noises from the EW HV-polarized S1 images. In addition, unlike the conventional
methods, our technique can be applied to the S1 GRD images ingested in the GEE platform, which
leads to improving the quality of the time-series analysis on oceanographic applications.
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Figure 2: Model test result, (a) the noisy, (b) predicted using our model, and (c) clean image.
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Processing of high squint bistatic SAR data: The case of Harmony
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1 Introduction

The Harmony mission is a planned ESA mission which will feature two satellites flying in close formation
with Sentinel-1 (S-1). Each of these companion satellites will carry a passive SAR instrument as a main
payload which records echoes of pulses transmitted from S-1. One of the primary objectives of the mission
is ocean parameter retrieval [ESA, 2022]. Due to many peculiar features of the acquisition geometry,
processing of data needs a careful consideration. In this paper, we will discuss the main challenges that arise
from the unique acquisition geometry and propose a solution for properly handling the data, with emphasis
on focusing using full azimuth bandwidth, as is required for ocean parameter retrieval applications.

1.1 Observation geometry

Two different bistatic acquisition geometry configurations are envisioned in the Harmony mission. The
first is the Stereo configuration where one of the companion satellites is leading and the other one trailing
S-1. The spatial baseline between the companion satellites and S-1 is expected to be between 350 and 400
km. The envisioned applications with this configuration is mainly measurement of surface velocity vectors
employing a variety of techniques. For example, along-track interferometry to measure instantaneous
velocity vectors of ocean surfaces. For this application, the antenna in the companion satellites is expected
to feature at least two phase centers displaced in azimuth (see Fig. 1(a)).

(a) (b)

Figure 1: Satellite configurations of the Harmony mission. (a) Stereo configuration, (b) Across-track
interferometric configuration.

The second configuration is Across-track interferometry configuration, where the two companion satel-
lites are expected to be separated by a baseline in the across-track direction to map topographic changes
of the observed medium using single-pass across track InSAR technique. This is illustrated in Fig. 1(b).
The baseline in the across-track direction is expected to vary between 400 and 800 m.

2 Considerations in processing high squint bistatic SAR data

Due to the large along-track separation between the transmitter and receiver satellites in the Harmony
configuration, see Fig. 1, the system features a high squint bistatic geometry. Moreover, as the two
companion satellites record the pulse transmitted by Sentinel-1, their antenna is expected to feature
azimuth beam-steering when S-1 operates in TOPS mode (see section 2.3). These features need to be
carefully considered in designing a frequency domain focusing kernel for Harmony. In the following section,
we discuss the main signal properties arising from the unique high-squint bistatic acquisition geometry of
Harmony.

2.1 Frequency domain SAR processing

Operational SAR processors are almost always based on frequency-domain focusing kernels due to their
high computational efficiency. The SAR system is a linear system where the collected raw data is modelled
by the convolution between the complex reflectivity of the imaged medium and the point target response
also called the system Impulse Response Function (IRF). Therefore, given the raw data and the IRF of
the SAR system, SAR focusing is the processes of retrieving the complex reflectivity by using the IRF as a
matched filter. This can be efficiently done in the frequency domain by making use of the analytic Fourier
transform of the IRF.
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2.2 Range migration model

In frequency domain SAR processing, the range migration, i.e., the variation of the distance between the
target and the platform(s) as a function of azimuth time is the single most important parameter. This
model is employed to derive analytical expressions of frequency domain focusing kernels. Traditionally,
a one-parameter hyperbolic Range Migration Model (RMM) has been used in combination with a zero-
doppler coordinate system. This model is of adequate accuracy for monostatic acquisition with low to
moderate squint. In addition, a semi-analytical solution to the inversion problem is available, resulting in
the well-known ω-κ algorithm [Cumming and Wong, 2005]. However, for the high-squint bistatic acquisi-
tion geometry of Harmony, the hyperbolic RMM is not accurate enough, in particular when derived in a
zero-doppler coordinate system. This is because, even though each of the transmitter- and receiver-range
histories are hyperbolic, their sum is not hyperbolic. Therefore, an accurate range migration model cou-
pled with a generalized SAR coordinate system is fundamental for deriving the ω-κ kernel for focusing
data from the companion satellites. Our proposed approach is to expand the bistatic range history into
a Nth-order polynomial model. This is used to derive the ω-κ kernel by making use of series reversion
[Neo et al., 2007] and the principle of stationary phase approximation.

2.3 TOPS mode of operation

The Sentinel-1 SAR instrument makes extensive use of the azimuth scanning TOPS modes (IW and
EW), which introduces a linear Doppler centroid variation within each burst of data. The PRF is high
enough that the signal is properly sampled, but folded (aliased) within the azimuth frequency band
[De Zan and Guarnieri, 2006]. The frequency dependence of the focusing kernel means that data must
be unfolded in frequency before it can be applied. An efficient method to exchange frequency and time
folding (and the inverse) without intermediate oversampling was introduced by [Engen and Larsen, 2011].
The combination of high squint and full bandwidth processing requires some modifications to the method,
to be described below.

2.4 The squinted 2D spectrum

The Doppler centroid frequency is in general dependent on range frequency. In low-and moderate-squint
SAR systems, which are characterized by small doppler centroid, this variation is very small relative to
the Pulse Repetition Frequency (PRF), and can be ignored. However, for highly squinted acquisitions
of Harmony, the Doppler centroid variation is large enough that the azimuth spectrum wraps in the 2D
spectral domain. This is illustrated in figure 2.

Figure 2: Azimuth bandwidth filtering and/or spectral extension for a squinted acquisition. The signal in
the squinted SAR acquisition in the 2D frequency domain; range frequency on the horizontal axis, azimuth
frequency on the vertical axis. Without spectral extension, pieces of the spectrum fall outside the band
defined by the PRF (orange rectangle) and will be aliased (folded). Spectral extension creates more space
in the azimuth frequency domain (black rectangle) so that the spectrum can be unfolded. If an azimuth
bandwidth-limiting filter is required, it can be applied in this domain, such that it follows the shape of
the spectrum (yellow dashed line) at each range frequency. If the resulting signal falls entirely within the
orange box, spectral extension is not necessary.

When the processing azimuth bandwidth is to be limited, as is usual for non-ocean applications, care
must be taken that the azimuth bandwidth filter is applied in the 2D frequency domain, and in such a way
that it tracks the azimuth/range frequency dependence, shown with the dashed yellow line in the figure.
Depending on the amount of squint and filtering, the total azimuth bandwidth may be within the limit
given by the PRF and no further special precautions are necessary. Illustration with simulated data is
presented in a companion paper in [Grydeland et al., 2023].
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2.5 Full bandwidth processing for ocean applications

One parameter of interest that can be estimated from SAR data is the Doppler centroid anomaly (DCA)
which in turn can be used to derive radial velocity of the observed ocean surface. Accurate retrieval of this
parameter requires processing of the full azimuth bandwidth. In this case,1 the 2D spectrum needs to be cir-
cularly extended after range compression, but before applying the focusing kernel [Davidson and Cumming, 1997].
This processing step is referred to as azimuth spectral extension. After the circular extension, the signal
should be filtered down to the correct (unaliased) bandwidth using either a) for ocean applications: a
boxcar filter corresponding to the full azimuth bandwidth, or b) the appropriate bandwidth-limiting filter.
In either case, the filter should be applied as indicated in figure 2.

2.5.1 Stripmap-like modes

For modes without azimuth sweeping, i.e., all modes except Spotlight and TOPS, data is brought to the
2D frequency domain by way of a 2D FFT. If necessary using short blocks in range. The expanded azimuth
frequency domain implies a higher effective azimuth sampling rate for these cases.

2.5.2 High-squint TOPS modes

When a TOPS mode is used, the sweep of the antenna means that the azimuth frequency of the data varies
over a band that is several times wider than the PRF, but the instantaneous bandwidth (determined by
the azimuth antenna pattern) is adequately sampled. As hinted at above, the data are brought into the
azimuth frequency domain by way of an efficient spectral mosaicing operation called the moving-band
chirp-Z transform (MBCZT) [Engen and Larsen, 2011]. At the end of this operation, the data have been
effectively resampled to a higher sampling rate that allows the full unwrapped spectral extent of the data to
be represented without padding out to greater size. The MBCZT consists of three steps: the first and last
steps are application of phase ramps (multiplication with chirps), while the middle step is a convolution
with a chirp. The convolution is efficiently implemented as a multiplication in the frequency domain. Steps
that require access to the azimuth frequency domain are then most conveniently applied in the middle of
this convolution.

In the high-squint full-bandwidth case, the MBCZT as described previously must be modified by
spectral extension. The spectral extension serves two purposes. The first is to unwrap the azimuth
spectrum in a range-frequency dependent way. This is similar to what is described above, except for
how the data was brought to the azimuth spectrum domain. Secondly, higher squint data will undergo
significant dispersion during the focusing, meaning that it will spread out in azimuth time. The data must
be prepared in such a way that there is enough space in the data array for the dispersion to occur without
overlaying signal from different azimuth times. Such space can be secured by azimuth bandwidth filtering,
by padding out the azimuth frequency domain, or by azimuth spectral extension.

It is perhaps surprising, and therefore worth emphasizing, that it is the azimuth frequency domain
which must be bandwidth-limited, padded or extended inside the convolution in order to create space in
the azimuth time domain. Spectral extension or padding at this step does not modify the effective azimuth
sampling rate in the TOPS case.

2.5.3 The inverse moving-band chirp-Z transform for squinted modes

The IMBCZT is constructed from the same steps as the MBCZT, inversed and in the opposite order.
The chirp rate is also a different one, arising from the combined effect of the antenna sweep and the
doppler rate of the targets. For the transform to operate correctly, the signal must be centered in both
azimuth frequency and azimuth time. There are multiple intricacies involved. These will be presented and
discussed. An example using simulated data is shown in [Grydeland et al., 2023].
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Machine learning for evaluating the drivers of variability in Arctic sea-ice
motion.

Physics-based simulations of Arctic sea ice are highly complex, involving transport between
different phases, length scales, and time scales. Due to these complexities, numerical simulations
of sea-ice dynamics have a high computational cost and a high model uncertainty. We employ
machine learning (ML) to make predictions of sea-ice motion. The ML models are built to
predict present-day sea-ice velocity given present-day wind velocity and previous-day sea-ice
concentration and velocity. Models are trained using reanalysis winds and satellite-derived
sea-ice properties. We compare the predictions of three different models: persistence (PS),
linear regression (LR), and convolutional neural network (CNN). We quantify the
spatio-temporal variability of the correlation between observations and model predictions.
Additionally, we analyze model performance in comparison to variability in properties related to
ice motion (wind velocity, ice velocity, ice concentration, distance from coast, bathymetric
depth) to understand the processes related to decreases in model performance. Results indicate
that a CNN can make skillful predictions of daily sea-ice velocity with a correlation as high as
0.80 between predicted and observed sea-ice velocity, while the LR and PS implementations
exhibit correlations of 0.77 and 0.69, respectively. The correlation varies spatially and
seasonally; lower values occur in shallow coastal regions and during times of minimum sea-ice
extent (Figure 1). LR parameter analysis indicates that wind velocity plays the largest role in
predicting sea-ice velocity on one-day timescales, particularly in the central Arctic (Figure 2).
Regions where wind velocity dominates LR are regions where the CNN has higher predictive
skill than the LR (Figures 1 and 2).

With a mind towards dynamical understanding and backwards propagation for assimilation we
are using ‘explainable AI’ (XAI)  techniques to understand how the CNN is making predictions.
Similarly to LR, XAI analyses show that winds are the most important predictor overall, but that
there are subtleties as to where the winds matter most for overall sea ice motion. Moreover, it
shows the specific regions where knowledge beyond wind velocity is important. We compare the
explainable AI outputs to LR parameters (Figure 2) and analyze both spatial and temporal
patterns in efforts to understand how the relationship between wind and ice motion is changing
as the ice melts.



Figure 1: (a) Mapped correlation for predictions of sea-ice velocity made by the CNN. (b) The
difference in correlation between the CNN and LR models. The gray regions in (b)  represent
locations where the difference in correlation between the  two models is not statistically
significant.



Figure 2: Magnitude of the normalized linear regression coefficient for the relationship between
sea-ice velocity components and input parameters (a, wind speed, ua; b, sea-ice speed, ui; c,
sea-ice concentration, ci), normalized to the maximum of a-c. (d) Maximum linear regression
parameter (a-c) for predicting sea-ice velocity at each location.
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1 Introduction

The Harmony mission is a planned ESA mission which will feature two satellites flying in close for-
mation with Sentinel-1. Each of these companion satellites will carry a passive Synthetic Aperture
Radar instrument (SAR) as a main payload which records echoes of pulses transmitted from S-1.
One of the primary objectives of the mission is ocean parameter retrieval [ESA, 2020]. Due to many
peculiar features of the acquisition geometry, processing of data needs a careful consideration. In a
companion paper [Yitayew et al., 2023], we discussed the main challenges that arise from the unique
acquisition geometry and proposed solutions for properly handling the data, focusing in particular on
ocean parameter retrieval applications. In this paper we apply the proposed solution to simulated
bistatic SAR data which is simulated with an End-to-End Performance Simulator software that has
been developed as part of the harmony mission validation study [Dubois et al., 2023]. Two different
bistatic acquisition geometry configurations are envisioned in the Harmony mission. These are Stereo
and Across-track interferometry configurations. In this paper, we will focus on the first of these, the
Stereo configuration, where one of the companion satellites is leading and the other one trailing S-1.
The spatial baseline between the companion satellites and S-1 is expected to be in the order of hundreds
of kms (350 - 400 km). The envisioned applications with this configuration is mainly measurement
of surface velocity vectors employing a variety of techniques. For example, along-track interferometry
to measure instantaneous velocity vectors of ocean surfaces. For this application, the antenna in the
companion satellites is expected to feature at least two phase centers displaced in azimuth. The second
configuration, the Across-track interferometry configuration, is not discussed here.

1.1 Harmony End-to-End performance simulator

The end-to-end simulators are a classic tool for characterizing the performance of a mission, as defined
by the science requirements. They integrate the definition of a set of geophysical scenarios (set as
truths), the geometry and timing of the acquisition, the transfer function of the instrument, and the
prototyping of all levels of processing (on-board L0, L1, L2). At the end of the L2 processing, the
estimates of the geophysical parameters of interest can be compared to the geophysical truth used
as an input into the simulation. Thus, the performance of the estimations can be quantified, mainly
characterized by biases and errors. The main objective of the Harmony End-to-End Performance
Simulator for ocean applications (HEEPS/Mare) is to validate the SAR derived products, as presented
in [Dubois et al., 2023]. In this paper, simulated bistatic SAR data using one of the companion
satellites will be used for illustration.

1.2 Simulation setup: Sea-state

The animated sea surface is modelled through a mesh with a resolution of 2.5 m. Topography and
kinematics are simulated in the frame of the Choppy Wave Model [Nouguier et al., 2009]. Bistatic
EM scattering is computed according to SSA-1, applied to intra-facet roughness. Fully polarized radar
equation is applied at the facet level, accounting for realistic antenna patterns for each receiver/phase
center/polarization channel. Complex contributions from illuminated facets are rasterized in range
for all receiving channels. The resulting oversampled profiles are then convolved with the uncom-
pressed waveform and under-sampled to produce raw IQ signals. In the simple simulation case used
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hereafter, the sea state is homogeneous, comprising swell and wind-sea components, both oriented
approximately across-track. The swell spectrum is gaussian, with a central wavelength of 200 m. It is
intentionally made highly coherent, with correspondingly small spectral spread (FWHM is 0.003 rad.m-
1 in wavenumber and 10° in azimuth). The wind-sea component resorts to the Elfouhaily spectrum
[Elfouhaily et al., 1997], with U10=7 m/s and a fetch of 450 km.

2 Brief overview of TOPS SAR data processing

An efficient algorithm for processing TOPS SAR data has been presented in [Engen and Larsen, 2011]
and revised in [Yitayew et al., 2023] for handling high-squint bistatic SAR data. In the low squint
monostatic case, the focusing does not cause much dispersion. In the high-squint bistatic case however,
the situation is very different. Figure 1 illustrates the problem. The left panel shows a spectrogram of
time-wrapped raw data. There are clearly discernible bands of scattering, corresponding to the different
spatial regions that contribute to this slice of range, but at different azimuth frequencies. After the
focusing (right panel), the dispersion has caused signal to disperse in azimuth time (horizontally).
While banding structure is still discernible, it is no longer possible to cleanly unfold the time folding.
As presented in [Yitayew et al., 2023], the solution is to apply spectral extension.

Figure 1: The problem with dispersion in the focusing. The time-wrapped raw data (left) have clearly
identifiable bands of stronger scattering. After focusing (right) dispersion has caused the bands to
bleed into each other such that scattering from distinct spatial regions can no longer be separated.

Spectral extension, figure 2, occurs in the middle of the convolution step of the (forward) MBCZT.
For sea state characterization purposes, a boxcar filter corresponding to the full original bandwidth
(i.e., the PRF) is used. After demodulation and deramping of the data (see [Yitayew et al., 2023]),
there is a residual coupling between range frequency and azimuth frequency due to the high doppler
centroid. Figure 2(a) shows the data in the 2D frequency domain for a small range block. The
azimuth frequency dependence on range frequency is indicated by the red dashed line, while the yellow
dashed lines indicate the limits of spectrum not afflicted by aliasing. The small triangles in top left
and bottom right corners are pieces of spectrum that are wrapped (aliased) in azimuth frequency.
Figure 2(b) shows the data after spectral extension. The data have been duplicated in the azimuth
frequency direction and then filtered to the desired azimuth bandwidth with a filter that tracks the
azimuth centre frequency for every range frequency. In this example, a boxcar filter with bandwidth
corresponding to the original PRF was used. The feature at central range frequency is an artifact
introduced in the data for illustration purposes. Observe that the scale on the vertical axis is different
in the two panels.

Figure 3 shows that the space created through spectral extension allows the dispersion to occur in
the focusing in a way which still allows the bands from distinct spatial regions to be cleanly separated.

2.1 The inverse moving-band chirp-Z transform for squinted data

After focusing, but before the final IFFT, the data are in the range-doppler domain, wrapped in azimuth
time, albeit at a different rate than before focusing (cf. the difference between panels 1 and 2 of figure 4.
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(a) (b)

Figure 2: Spectral extension of simulated bistatic TOPS data. (a): wrapped data in the 2D frequency
domain, (b): extended 2D spectrum.

Figure 3: Allowing for dispersion in the focusing. The bands of signal in the time-wrapped raw data
(left) are clearly separated thanks to the spectral extension procedure. After focusing (right) dispersion
has caused the bands to come into close proximity, but without actual overlap. In this figure, unit
sampling and normalized bandwidth is used on the axes.

Spectral mosaicing to bring these data to a frequency-wrapped time-domain representation is efficiently
achieved using an inverse moving-band chirp-Z transform (IMBCZT) [Engen and Larsen, 2011], with
some revisions outlined in [Yitayew et al., 2023] for the high-squint bistatic case.

Figure 4: The steps of the inverse moving-band chirp-Z transform (IMBCZT) for high-squint data.
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MediSAR: an exhaustive augmented dataset of segmented Sentinel-1 SAR ocean observations of the
Mediterranean Sea and the Black Sea regions
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Abstract—With satellites observations being acquired
routinely and producing large quantity of data, consid-
eration is to be given to how to share these observations
and the derived information computed from them. The
observations are often time-consuming to obtain and need
CPU and GPU capacity to be processed. We thereby
introduce the MediSAR dataset. Dedicated to the Mediter-
ranean and the Black Sea, it is designed to exhaustively
encompass all Sentinel-1 mission observations. 102,504
observations acquired between 2014 and 2022 are combined
with inferences from deep learning models. These models
provide IA-derived geophysical information on biological
slicks, wind speed, rainfall and convective processes using
state-of-the-art methodologies. Collocation with non-SAR
sensors (Sentinel-3/OLCI, MSG/Seviri) are planned. This
dataset aims at sharing SAR observations and simplifies
the study of metocean phenomena.

I. INTRODUCTION

C-Band Synthetic Aperture Radar (C-SAR) is a valuable
tool for studying ocean surfaces, particularly for wind
speed [1] and direction [2], waves [3], and oil pollution
[4]. It has the advantage of high resolution while not
being affected by cloud cover. The Sentinel-1A and
Sentinel-1B satellites have been using C-SAR since 2014,
providing a large quantity of data that is difficult to
manage. As meteorological and ocean (grouped under
the name ”metocean”) processes rarely need the full
resolution provided by SAR sensors, the estimation of
metocean processes usually includes downloading the
level-1 product at a resolution of 10 m/px, preprocessing,
downscaling the SAR observation, and processing by
a model. These considerations are even more relevant
as deep learning models begin to appear with [5] cat-
egorizing thumbnails under ten metocean classes and
[6] estimating the rainfall on coastal observations. Deep
Learning (DL) models also require more computational

capabilities and especially GPU acceleration. Altogether,
the download and computational means can greatly ham-
per the uptake of SAR products for the study of metocean
processes by a wide user community.

Recent SAR datasets have been published, such as the
TenGeoP-SARwv dataset [7], which contains more than
37,000 observations of 20x20 kilometers at 50 m/px,
or the OpenSARShip dataset [8], with 11,000 images
centered on ships at 10 m/px. The present paper follows
the same objectives and introduces the MediSAR dataset,
which contains SAR observations as well as derived
model estimates of rainfall, convective processes, and bi-
ological slicks. SAR-based wind speed, computed with a
rain-invariant model, is also proposed. The also provides
information from third party sensors or model. Wind
speed for the reanalysis ERA5, chlorophyll contration
from Sentinel-3 OLCI and brightness temperature from
the Sentinel-3 mission.

The dataset is available at the following url: https://
github.com/CIA-Oceanix/MediSAR

II. DATA

Fig. 1. Geographical distribution of Sentinel-1 IW observations from
2014/10/04 to 2022/12/31.

The dataset is composed of 102,000 IW observations
from both Sentinel-1A and Sentinel-1B. As indicated by
Fig. 1, they cover the Mediterranean Sea and the Black
Sea. Each observation typically cover 160 x 200 km.

https://github.com/CIA-Oceanix/MediSAR
https://github.com/CIA-Oceanix/MediSAR


III AGGREGATED MAPS

Fig. 2. Geographical distribution of Sentinel-1 IW observations with
available level-2 products from 2014/10/04 to 2022/12/31.

The dataset contains both SAR channels and inferences
from deep learning models. The co-polarized (vertical-
vertical) and cross-polarized (vertical-horizontal) data are
included, at a resolution of 200 m/px. These observations
are computed from the GRDH product available from the
ESA’s Copernicus Service and NASA’s Alaska Satellite
Center at a native resolution of 10 m/px. Data from
Sentinel-1A runs from October 17th, 2014 to December
31st, 2022, for a total of 61,232 observations. Sentinel-
1B covers from September 26th, 2016 to December
23rd, 2021, for a total of 41,647 observations. However,
Sentinel-1B satellite experienced issues with the power
supply unit and is planned to be deorbited. Continuity
of SAR observations will be ensured by the launch of
Sentinel-1C in 2023. Each Sentinel-1 satellite is designed
to have a revisit period of 12 days. However, as the tracks
of the swaths overlap, the observation period ranges from
4 to 2 days, depending on the location.

To each SAR observation, there is an associated
segmentation of meteorological and oceanographic pro-
cesses. Biological slicks, oil-like surfactants produced by
plankton, are visible on SAR observations because of the
decreased sea surface roughness caused by the viscosity
of the surfactant layer. They provide information on both
the biological activity and surface meteorological and
oceanographic situations as their dynamics depend on
wind, waves, and currents. They are stored at 200 m/px
and quantized to 8 values per pixel.

Convective processes indicate changes in wind charac-
teristics (speed and direction). They help to understand
moisture and heat transfer over the ocean. Similarly to
biological slicks, they are quantized to 8 values per pixel
but stored at 400 m/px as they are often large patterns
that do not need higher resolution.

Rainfall segmentation maps obtained from [6] are
stored at 400 m/px. They indicate qualitative information
corresponding to thresholds at 1 mm/h, 3 mm/h, and 10
mm/h of estimated rainfall. Rainfall is a major source of
discontinuities on SAR observations, otherwise mainly
dominated by wind-related phenomena [9]. Usual SAR-

based wind speed estimates rely on the Geophysical
Model Function to retrieve the wind speed, but fail on
rain-contaminated areas. Therefore, we add wind speed
estimates obtained from a model specifically trained to
reduce rain-related errors. The estimates are stored at 200
m/px, with a quantization step of 0.1 m/s, up to 51.2
m/s. However, wind speed estimates are computed only if
OCN products are available. From August 2015 to March
2017, they cover only the Lion Gulf. Then, until April
2022 they are provided for the entire Mediterranean Sea.
From then and continuing, they are available for each
L1 product, including the Black Sea. The distribution of
available OCN products is indicated in 2.

Segmentation examples are depicted in Table I.

III. AGGREGATED MAPS

Due to multi-year measurements, the segmentation maps
can be aggregated to observe the seasonal variability of
the segmented phenomena. Fig. 3 contains the aggrega-
tion of the predicted biological slick segmentation during
the summer and winter in the Alboran Sea, as well as the
monthly evolution averaged between 2015 and 2022. The
increased biological activity during the summer is clearly
visible, rising interest in future collocation with other
sensors such as Sentinel-3’s radiometer. The distribution
of the slicks also follows the Western Alboran Gyres,
highlighting the capacity for biological slicks to provide
information on currents.

JJA DJF

Fig. 3. Biological slick detection probability (restricted to points with
wind speed between 6.5 and 12 m/s) during summer (left) and winter
(right) in the Alboran Sea between 2015 and 2022.

Fig. 4 represents the probability of detecting convective
processes in the Tyrrhenian Sea for wind speeds ranging
from 6.5 to 15 m/s. Mean wind speed is also indicated.
It highlights the impact of elevation on wind regimes
over the sea surface. The correlation between convective
processes and lower wind speeds is high, although some
areas, such as the south and north of Sardinia, experience
both high mean wind speeds and high probabilities of
convection detection. We can also see a variation in mean
wind speed in open waters with latitude that does not
correspond to a variation in the probability of convection
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Mediterranean Sea and the Black Sea regions

2017-04-21 18:17:50
Co-polarization Cross-polarization

2017-12-29 16:38:58
Co-polarization Rainfall estimation

2017-03-16 17:29:11
Co-polarization Slicks segmentation

2017-12-18 04:40:59
Co-polarization Convection segmentation

2021-12-07 15:58:13
Co-polarization Wind speed estimation

TABLE I
SAMPLES OF THE MEDISAR DATASET.

detection.

IV. CONCLUSION

To facilitate the diffusion of SAR-derived meteorological
and oceanographic information, we present the MediSAR
dataset. This dataset contains rainfall segmentation, bi-
ological slick delineation, convective process detection,

Convection detection Mean wind speed [m/s]

Fig. 4. Convection detection probability (left) and mean wind speed
(right) in the Tyrrhenian Sea between 2017 and 2022.

and wind speed estimation. It includes the entirety of the
Wide-Swath products over the Mediterranean Sea and
the Black Sea from the Sentinel-1 mission as well as
other satellite data from Sentinel-3 ans MSG. We hope
this dataset will aid in the development of deep learning
models, which heavily rely on large quantities of data, as
well as simplify collocation with various sensors.
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Statement of Problem
The air-sea fluxes of momentum, heat, and water vapor are crucial data records because they
represent lower boundary conditions on the atmospheric circulation and upper boundary
conditions of ocean waves and currents. They are of fundamental importance for improving our
understanding of coupled atmosphere-ocean dynamics and efforts to model them. Global
measurement of these fluxes using conventional fixed or moving systems is infeasible.
Satellite-based measurements are the practical alternative source for estimating fluxes and this is
one of the primary goals of satellite remote sensing. Sensible and latent heat fluxes are
proportional to the imbalances between the near-surface temperature and humidity and their
values at the sea surface multiplied by the difference between the near-surface wind speed and
the surface currents. Standard remote sensing methods are capable of retrieving the surface
values and the wind speed difference. However, retrieval of the near-surface temperature and
humidity remains a major challenge. The proportionality factors are called bulk flux coefficients
and they are functions of the air-sea stratification, which in turn describes the relative importance
of shear and buoyancy in establishing the mean state of the turbulent near-surface atmospheric
flow. While the coefficients vary continuously with stratification, one can think in terms of three
basic states: buoyantly-driven, shear-driven, and stably-stratified as the stratification shifts from
unstable to near-neutral to stable. Compared to unstable stratification, the sensitivity of the
coefficients to stratification is higher in the near-neutral regime and the transition from
near-neutral to stable is comparatively abrupt. Hence, the sensitivity of the fluxes to small errors



in temperature or humidity is high in the near-neutral regime. Since satellite retrieval of
near-surface temperature and humidity at the precision and accuracy needed to estimate rather
small imbalances is likely to remain quite difficult, novel remote sensing approaches providing
independent information about air-sea stratification have a strong potential to improve ocean flux
remote sensing.

Overview
Synthetic aperture radar (SAR) can implicitly measure the ocean surface roughness through the
backscattered electromagnetic energy off the sea surface. Over the ocean, Sentinel-1 (S-1)
defaults into wave mode (WV) and acquires very high resolution (5 m) small (20 km) images
approximately every 100 km. It has been established that SAR captures information about ocean
swells and the WV was originally designed to capture ocean gravity waves at the appropriate
scales. However, WV has opened up new research opportunities to study the marine atmospheric
boundary layer (MABL) because its high spatial resolution can resolve a wide range of MABL
turbulent eddies and its 20 km field of view is large enough to capture many realizations of
MABL-scale eddies. The two S-1 satellites, S-1A (2014-present) and S-1B (2016-2022), of the
European Space Agency (ESA), each collect ~65,000 WV images covering approximately 3% of
the globe every month. To date, more than 700TB of level-1 (L1) data has been accumulated. In
order to take advantage of this vast resource, new methods are needed to extract useful
information. Previous work from our team has established statistical image detection methods to
automatically identify a wide range of geophysical phenomena including MABL organized eddy
coherent structures (CS) that characterize unstable and near-neutral stratification. We further
found that the lack of such characteristic MABL eddy structures (and frequently the ability to
detect certain oceanic processes that can modulate the surface roughness) indicates stable
stratification. The goal of this research is to further develop and expand this analysis and refine
our predictions of air-sea stratification and consequently improve the retrieval of ocean surface
fluxes. The following is an overview of the key outcomes of the work.

MABL State Detection:
We developed machine learning methods to sort millions of S-1 images into basic MABL state
categories: wind streaks (WS), micro-scale convection (MC), and lack of any atmospheric
signature with scales larger than 1000 m (negligible atmospheric variability ~NV). (Other
interesting geophysical phenomena are also cataloged.) ERA5 atmospheric surface analyses have
been time-space interpolated to each WV image providing consistent estimates of the air-sea
stratification in terms of a bulk Richardson number (Ri). This systematic and global analysis of
millions of SAR images shows that image textures are well correlated with Ri and define distinct
unstable, near-neutral, and stable stratification regimes. That is, the different stratification
regimes result in characteristic MABL mean states in which particular classes of coherent
structures form and induce identifiable sea-surface roughness patterns. The bulk Richardson
number is one of the key parameters controlling the bifurcation between the different turbulent
states. The relationships between SAR-observed coherent structures and MABL state through Ri
are robust and hold in overall averages, at seasonal/regional scales, and at MABL-process scales.

We expand the analysis to specific locations where we have detailed observations of the MABL
turbulence and air-sea fluxes to check on the robustness of the results. We focus on two buoys: 1)
the Coastal Pioneer Array buoy (CPA) off the US Northeast Coast and 2) the NTAS buoy in the



north Atlantic trade wind region near Barbados. The Pioneer buoy was selected because of the
high interest in developing the area for offshore wind energy. The Barbados region and
especially the MABL dynamics associated with its low-level clouds are of major climate
research interest to understand how MABL processes affect Trade Wind Boundary Layer
(TWBL) cloud formation and evolution. In both of these case studies, we rely on hand-labeled
images to remove the potential uncertainties imposed by the machine learning detection model.

CPA is located in the mid-latitudes where stratification is generally closer to neutral. Of
particular interest to the wind energy industry is the ability to characterize MABL stratification
and the presence of MABL CS. This information is valuable because CS, especially MABL rolls
can induce large wind stress divergence in the lower MABL and because the stratification plays
an important role in characterizing energy production. We find that the NV, WS, mixed WS/MC,
and MC cases are well mapped to Ri regimes. In particular, we find that the mixed WS/MC
regime is intermediate to the WS and MC regimes, which indicates that the MABL bifurcation
occurs through intermediate MABL states that combine the particular CS found in the extremes.
This reinforces how closely tied the MABL state is to stratification. Consistent with the
SAR/ERA5 results in the northern hemisphere mid-latitudes, we find that the more stable
conditions are associated with predominantly southwesterly flow, the near-neutral flow with
westerly flow, and unstable conditions with northwesterly flow.

At NTAS, one of our primary goals was to test Grossman's (1982) hypothesis that MABL
underwent a major state bifurcation from roll to cells across a very narrow range of stratification.
The hand-labeled images for this study refined the WS to MC transition regime across five
categories and included surface features associated with boundary layer cloud processes. We
confirm Grossman’s hypothesis that the roll-to-cell transition occurs smoothly across a narrow
range of Ri centered on the global WS/MC boundaries defined by the SAR/ERA5 comparison.
We further found that the stratification/CS correlations hold even when significant sub-image
variability is present.

Statistical Model Development:
One key aspect of this work is the continued development of statistical or machine learning
models in order to analyze the continuing torrent of WV data. We place emphasis on improving
the statistical models to detect phenomena in a more classic image detection problem. A novel
approach through semi-supervised learning using uncategorized WV imagery has been
implemented. Preliminary results suggest that this method is superior to more generalized
models built on large and random sets of natural images. Besides the detection of the
phenomena, we develop “regression” models to estimate air-sea stratification parameters like Ri
and humidity-corrected air temperature directly from the SAR imagery. These regression models
make no assumptions about what features are included in the SAR scenes. This leads us to the
conclusion that atmospheric phenomena dominate the S-1 WV images. This new satellite-based
approach that quantitatively estimates atmospheric stratification has implications for weather
modeling and air-sea flux products.
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The Canadian Space Agency (CSA) established the Hurricane Watch program in 1999 in 
collaboration with the Canada Centre for Remote Sensing (CCRS) and NOAA in order to capture 
wide-swath RadarSAT-1 C-band VV SAR images of the sea surface under Atlantic hurricanes. At 
the time this was a major challenge due to relatively long lead times for scheduling image 
acquisitions and comparatively less accurate tropical cyclone (TC) track forecasts. Over the years, 
lead times greatly shortened and track forecasts have become much more accurate. Presently we 
have nearly comprehensive global acquisitions of TCs through continuations of Hurricane Watch 
using RadarSAT-2 and RCM and through the Satellite Hurricane Observation Campaign (SHOC) 
at Ifremer in collaboration with the European Space Agency (ESA). SHOC was established in 
2016 and its SAR component is mainly focused on Sentinel-1 C-band imagery, although 
RadarSAT images are frequently included. Importantly, these later SAR instruments provide both 
VV and VH images. This greatly expands the usefulness of the data since VV NRCS saturates in 
the range 35 to 40 m s-1 depending on the incidence angle. (Hurricane force wind is ~ 33 m s-1.) 
VH NRCS, while being a much weaker signal, remains dependent on the surface wind speed to 
~80 m s-1, which puts major TCs in the range of quantitative analysis. Furthermore, VV NRCS has 
a strong dependency on the relative azimuth between the surface wind vector and the radar beam, 
while VH has only a weak azimuthal dependence. Hence, retrieving surface wind using VV alone 
requires relatively accurate surface wind directions while VV/VH TC imagery can be rapidly 
converted to wind speed with poor or no knowledge of the wind direction. Equally importantly, 
ESA has adapted a free-and-open data policy for Sentinel-1, which should soon lead to a major 
expansion of research and operational use of SAR TC data.  

TCBLs are uniquely well-suited for quantitative study with SAR. TCs form and intensify over the 
ocean, which allows surface wind vector retrievals. They are quite compact storms so a single wide 
swath SAR image can capture most of “inner core”. Even though TCs are fueled by enormous air-
sea enthalpy fluxes, the high winds force the TC boundary layer (TCBL) to a state of nearly-
neutral stratification; the upper TCBL can even be weakly stably stratified. This simplifies the 
first-order analysis of the mean TCBL structure. A fluid dynamical consequence of the intense 
winds in near-neutral stratification is that the TCBL is essentially the paradigmatic boundary layer 
for the generation of turbulent coherent structures in the form of roll vortices. In fact, using data 
from both of the VV and VH images, the imprint of TCBL rolls, and a quantitative measurement 
of their orientation, is readily apparent in all regions of the TC. The routine combination of near-
neutral stratification, reasonably accurate high-resolution surface wind vectors and TCBL roll 
orientation is unique in boundary layer studies. The value of this combination is due to the fact that 
TCBL roll orientation is highly sensitive to the vertical shear of the mean horizontal wind profiles. 



This provides a possible pathway for diagnosing the mean state of the TCBL using SAR data in 
combination with a suite of analysis tools that were independently developed for TCBL studies.  

The first tool is a nonlinear diagnostic similarity TCBL model framed as a boundary value 
problem. It includes the effects of curvature accelerations and both radial and vertical advection. 
Given reasonable estimates of the surface stress vector, the wind above the TCBL and an estimate 
of the eddy viscosity profile, it solves for the mean wind profiles. A first-order estimate of the 
surface stress can be made directly from the SAR surface wind vectors and suitable neutral drag 
coefficients (Cd). Recent field programs have provided much insight into Cd in the high wind 
regime, so the SAR images directly provide the lower boundary conditions (BCs). To first-order, 
TCs above the TCBL are in gradient and thermal wind balance. Hence, an estimate of the gradient 
wind can be used as upper BCs. It has been proven that for the same upper and lower BCs, quite 
different mean flow profiles result when a reasonable variety of assumed eddy viscosity models are 
used, including ones that are in general use in TC forecasting and research models. TCBL 
parameterization remains one of the major open questions in numerical modeling and 
comparatively little is known about the eddy viscosities in the TCBL. Most TCBL research flights 
were restricted to weaker regions of the storm and, for safety reasons, NOAA no longer flies in the 
TCBL. Since the TCBL model can accommodate essentially reasonable eddy viscosity profiles, 
the space of resulting mean flow profiles can be examined assuming there is a metric for 
evaluating the results. 

The second tool provides the upper BCs for the similarity model. We employ a simplified version 
of the nonlinear similarity model to estimate the pressure gradient corresponding to each SAR 
surface wind vector. From this field of pressure gradients, we use ordinary least-squares to 
calculate the best fit pressure pattern, which can be converted to SLP given one or more pressure 
observations within the scene. Compared to drop sondes and depending on the metric used for 
evaluation, the SAR-derived TC SLP agree to ~4 mb. Gradient winds can be directly calculated 
from surface pressure gradients, which depend only on the shape of the sea-level pressure (SLP). 

The third tool provides a means to evaluate the TCBL mean wind profiles that are inferred directly 
from the SAR images. TCBL roll orientation is highly sensitive to the mean shear profiles. This 
tool calculates the basic properties of the expected TCBL rolls given vertical profiles of the mean 
wind shear and eddy viscosity. The most fundamental property is the roll orientation. Hence, the 
evaluation steps after the generation of SAR surface wind vectors are: (1) Calculate the SLP 
pattern from the surface stress vector field; (2) Calculate the gradient vector for each SAR wind 
vector; (3) Map these results into a R-Z grid centered on the surface wind circulation center; (4) 
Calculate TCBL mean wind profiles for a range of eddy viscosity profiles designed to illuminate 
how details affect the resulting profiles; (5) Calculate expected roll orientations and compare 
against the SAR observations.  

The results to date have been informative. The most commonly used TCBL parameterization is 
called YSU. Many recent investigations have challenged its validity, however, its simplicity and 
speed and robustness against model “blow-up” have kept it as the default in most applications. 
YSU enforces an eddy viscosity maximum at 1/3 the depth of the TCBL. Recent LES experiments 
indicate that the maximum should be closer to the surface. Our calculations support this 
contention, consistently better agreement in roll orientation occurs when the maximum value is 
closer to the surface, but the agreement reduces when it is too low. YSU also enforces a rapid 



decrease in eddy viscosity with height above the maximum value, which has also been called into 
question. Again, we find improved roll orientation agreement when this assumption is relaxed. 
Preliminary comparisons of the SAR-derived mean TCBL wind profiles against aircraft tail 
Doppler radar along storm penetration radial flights are difficult. At present the SAR winds 
reproduce much of the variability, but seem to bias about 20% low. Example results for hurricane 
Fiona (2022) are below. Fiona is a very challenging case: very small Cat-2 storm close to land. 
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Abstract

The radial velocity of the ocean surface is estimated from the doppler centroid anomaly
(DCA), which is essentially the difference between the doppler centroid estimated from
SAR data and the geometric doppler expected from a stationary target. DCA is usually
estimated from azimuth correlation coeffients of an unfiltered Level-1 Single Look Complex
(SLC) dataset in order to ensure spatial locality. Additionally, the use of focused data
facilitate precise masking of land masses and strong targets, e.g. ships or icebergs.

However, algorithms for generation of SLC products have different performance crite-
ria than DCA. In this work, we discuss an alternative approach for focusing of L0 SAR
data, based on algorithmic variations that are more suited for the purpose of DCA es-
timation. The suggested approach is particularly relevant for data with range variable
natural azimuth resolution, including Sentinel-1 TOPS and the Harmony mission.

1 Introduction
Estimation of the ocean radial velocity is an involved process [1]. In this work, we will limit
the discussion to the precise estimation of the Doppler Centroid from SAR data. Other com-
ponents of the DCA are system effects dependent on antenna patterns and satellite attitude.
Analysis of these components are beyond the scope of this work.

2 Signal processing considerations
Estimation of the doppler centroid from SAR data with the precision required for the pur-
pose of deriving the ocean radial velocity is challenging, and requires careful attention to
azimuth temporal sampling. The basic estimator is based on the phase of the azimuth one-
lag correlation coefficient [4]. However, in order to reach a precision of the order of 1 Hz, the
basic estimator needs to be corrected by a sideband correction procedure due to the inherent
azimuth aliasing of SAR data [1]. Successful sidelobe correction requires a critically sam-
pled azimuth spectrum, and any azimuth resampling or bandwidth limitation in the azimuth
direction will violate this.

2.1 The Sentinel-1 TOPS mode
The Sentinel-1 TOPS mode uses a linear electronic antenna sweep to enable scanning multiple
subswaths, at the expense of azimuth resolution. The (range variable) azimuth time resolution
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of TOPS SLC data is
∆taz(trg) =

(
1 +

γ

|β(trg)|

)
PRF−1, (1)

where PRF is the pulse repetition frequency of the RAW SAR data, γ is the linear sweep rate
of the antenna beam, and β(trg) is the range variable doppler rate, see e.g. [2]. This range
variable azimuth resolution is often referred to as fan shape distortion. In standard Sentinel-1
L1 products this spatial distortion is removed by resampling the data to a constant common
azimuth pixel spacing. Furthermore, all bursts are additionally resampled to a common grid
spacing. However, both these resampling operations are counterproductive and unnecessary
for the purpose of DCA estimation.

We propose that for Sentinel-1 TOPS mode data, a better approach would be to simply
avoid both these resampling operations. This leaves the azimuth spectrum sampled critically
for all ranges, yielding essentially independent estimates of the azimuth correlation coeffi-
cients, and at the same time simplifying azimuth sideband correction.

2.2 The Harmony mission
The 10th Earth Explorer mission Harmony is a bistatic mission consisting of one of the
Sentinel-1 satellites as the transmitter, and a pair of passive receiver satellites at a distance of
350 km in front of and behind Sentinel-1 in the orbit, respectively. Compared to the Sentinel-1
monostatic TOPS data, the high bistatic angle of this bistatic configuration poses some ad-
ditional signal processing challenges that needs to be taken into account when designing a
performant and accurate algorithm for DCA estimation. At high squint, the doppler centroid
cannot be assumed to be wavelength independent. A procedure referred to as spectral ex-
tension is needed to ensure proper focusing of the azimuth spectrum [3]. However, spectral
extension implies another resampling of the azimuth time axis that needs to be undone after
focusing to facilitate azimuth sideband correction of the doppler centroid estimates.

3 Discussion
In this preliminary manuscript we have indicated an improved algorithm for precise doppler
centroid estimation for the purpose of ocean radial velocity estimation, based on alternative
processing of Level-0 SAR data. In the final version, we will elaborate on the details, and
show the performance of the proposed approach using Sentinel-1 data. The implications for
the Harmony mission will also be analyzed.
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Sea ice is subject to permanent changes. It arises as seawater freezes, and is drifted and deformed by 

winds and ocean currents, waves and temperature fluctuations. Within hours, leads of open water can 

be closed by drifting ice. If the drifting continues, pushing sections of sea ice together, floes are piled 

up forming an uneven surface, or pushed upright into pressure ridges. In other places, closed covers 

of sea ice can break, forming leads of open water. Hence, this can be either a severe hazard or a 

welcome opportunity for ships in polar waters.  

Synthetic Aperture Radar (SAR) satellites make different structures within the sea ice visible. With their 

active radar antenna, they provide image data of the oceans and frozen waters through clouds and 

darkness. Since decades, national ice services utilize SAR images to create sea ice maps, which in turn 

are used for ship routing in polar waters. To further support the navigation in ice-infested waters, we 

established an operational data processing chain at the DLR ground segment. This allows to acquire 

and process SAR images of the German satellite mission TerraSAR-X along the planned ship course, as 

demonstrated in Figure 1, and provide them to navigators on board in near real time [1, 2]. The 

processing chain has been used in several research campaigns, amongst others the one-year-long 

MOSAiC expedition of RV Polarstern. It has been found that the support with these tailor-made, up-

to-date TerraSAR-X data can help optimizing routes.  To further support ship navigation, we aim to 

provide L2 products such as sea ice drift information automatically derived from subsequent SAR 

acquisitions. 

 

Figure 1: Ship navigation support during RV Polarstern expedition PS131 at east coast of Greenland through TerraSAR-X data 
supply along the planned ship route. Yellow: Ship track 

50 km 

 



In this contribution, we explore the capabilities of a new software processor that is intended to derive 

high resolution sea ice drift vector fields from subsequent SAR images, exemplarily shown in Figure 2. 

We quantize the accuracy of drift estimation using buoy data, and analyze the influence of different 

SAR parameters (i.e. incidence angle, heading, orbit direction), as well as different sea ice and 

metrological conditions. The drift vector estimation is based on the well-known phase correlation 

technique executed hierarchically in a multiscale Gaussian image pyramid. Phase correlation has first 

been applied in [3] for image pattern matching, and used for SAR based sea ice motion tracking in [4, 

5]. We showed first experimental results of the general approach combining TerraSAR-X ScanSAR and 

RADARSAT-2 ScanSAR Wide acquisitions in [2] and [6] and first quantification of its accuracy using drift 

buoy data for validation in [7]. In the study presented here, we introduce a new iterative approach 

which fragments image patches in the last resolution level of the image pyramid in order to better 

represent sea ice drift at borders of different ice sheets. Inspired by the consistency check in [5], we 

re-estimate drift vectors iteratively in each resolution level until an update of zero indicates the best 

match is found, which results in increased accuracy.  

Figure 2 exemplarily shows two drift vector fields derived from subsequent TerraSAR-X acquisitions 

taken on 25th, 26th, and 27th January 2020 during a storm event in Central Arctic. The drift vector fields 

show a quite homogeneous sea ice motion south- and eastwards, which supports the high reliability 

of the approach. Convergence and divergence zones become visible at the color jumps in the drift 

velocity map. Knowledge about the location and distribution of convergence and divergence zones as 

well as sheering zones helps for ship navigation in polar waters; in particular, convergence zones imply 

strong ice resistance difficult to pass even for icebreakers. 

The sea ice drift retrieval presented here is part of the software suite SAINT developed at the DLR 

Maritime Safety and Security Lab Bremen. SAINT is integrated in the operational processing chain at 

the DLR ground segment in Neustrelitz and provides L2 products to maritime users, e.g. ship or iceberg 

detection. For reaching near real time requirements, we use parallel processing and hardware 

implementation on FPGAs.  
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Figure 2: Examples for sea ice drift retrieval from TerraSAR-X data taken during MOSAiC expedition facing a storm event in 
late January 2020 in Arctic Ocean at 87°N. The background shows TerraSAR-X HH data from 2020/01/26 03:58 UTC (top) and 
2020/01/27 03:41 UTC (bottom) in grey scale, calibrated to sigma naught. Overlaid colors represent retrieved sea ice drift 
velocity in 264 m resolution and arrows illustrate sea ice drift vectors (5 km spacing). The upper drift field is generated from 
TerraSAR-X acquisitions taken on 2020/01/25 and 2020/01/26, the lower from 2020/01/26 and 2020/01/27. Convergence 
and divergence zones become visible at the color jumps in the drift velocity map.  
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Abstract

Deep learning based techniques have been applied in different environmental monitoring applications, including oil spill
detection. This study aims to provide an oil spill detection and early warning system in order to take quick action for clean up
operations for minimizing the environmental impact. Oil spills in the spaceborne Sentinel-1 Synthetic Aperture Radar (SAR) data
are detected by a trained deep learning based object detector. The detections are then defined as binary masks by the segmentation
method. Afterwards, the slick trajectory simulation is carried out. The system is running automatically on a regular basis when
there are expected Sentinel-1 acquisitions. However, to avoid unnecessary clean up operations on false alarms, the system requires
manual confirmation before sending a warning to the corresponding decision makers. The system performance should be evaluated
with detailed analysis, but the feasibility of building such an automated oil spill detection and early warning system has been
shown.

I. INTRODUCTION

Marine oil pollution from maritime accidents and illegal human-caused oil discharges can pose a great risk of environmental

damage and have large-scale and long-term biological consequences. As an oil spill begins to weather and disintegrate into

small fragments, it becomes difficult to recover the oil. Therefore, it is important to take action early to limit the spread of oil

spills and predict their trajectory, which highlights the necessity of building an early surveillance system. With the advantages

of wide coverage and frequent revisit, spaceborne SAR has been widely used in different environmental monitoring applications

including oil spill detection. Oil spills appear as dark formations in SAR images as they dampen the gravity-capillary waves

and thus reduce the backscatter. However, other phenomena also appear as dark formations (also known as look-alikes), which

makes automated detection of oil spills challenging. Based on the large amount of accessible SAR data after the advent

of Sentinel-1, a previous study highlights the possibility of detecting oil spills with a deep learning based object detection

algorithm [1]. With this previous experience, this study aims to provide an automated oil spill detection system which targets

oil spills in the Southeastern Mediterranean Sea on a regular basis. The detections are handed off to an existing oil spill

trajectory simulator for predicting the influenced regions over time. The integration of the different parts into a complete early

warning system can help with the oil combating response.

II. METHODOLOGY

This study focuses on oil spills in the Southeastern Mediterranean Sea within longitudes 31.5–36°E and latitudes 31–33.7°N.

The overall structure of the proposed oil spill detection and early warning system is shown in Figure 1. The system includes

four subsystems: satellite data processing, oil spill detection, forecast of synoptic condition and oil trajectory simulation. In the

satellite data processing subsystem, Sentinel-1 SAR Level-1 Ground Range Detected (GRD) products are downloaded from

Copernicus Open Access Hub on a regular basis and preprocessed with a series of corrections automatically with the use of

Sentinel Application Platform (SNAP) Python API. Afterwards, a mosaic of latest preprocessed scenes covering the study area

is formed and sent to the oil spill detection subsystem.

In the training stage of the oil spill detection subsystem, different scenarios were carried out to train the deep learning based

You Only Look Once version 4 (YOLOv4) object detection algorithm [2] on detecting one-class (i.e. oil spill) objects. In the

detection stage, the trained detector targets oil spills inside mosaics and defines their positions by bounding boxes. In order to

obtain the exact areas covered by the respective oil spills, segmentation is applied. The output binary masks are handed off

to the oil trajectory simulation subsystem. The simulation of oil spill trajectory and fate requires oil spill incident detail and

forecasts of synoptic conditions, such as wind, sea current and sea water temperature. The MEDSLIK model [3] then simulates

physical processes of oil spill incidents with respect to evaporation, diffusion, dispersion, emulsification, and beaching. The

simulation results are available via an online interface enabling users to perform their own simulations and visualize the results.



Fig. 1. An overview of the purposed oil spill detection and early warning system.
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Fig. 2. An example of detections from the oil spill detection subsystem using (a) the trained detector from the previous study [1] and (b) the implemented
detector.

The satellite data processing and oil spill detection subsystems are developed and maintained by DLR. The forecast of

synoptic winds is provided by the SKIRON system from the university of Athens, and the forecasts of sea currents and waves

are performed by IOLR. The oil trajectory simulation subsystem and its connected user interface are maintained by IOLR.

III. RESULTS

In the previous study, 9768 oil spills were used to train a YOLOv4 object detector. It reached an average precision (AP) of

69.10% and 68.69% on the validation and test sets, respectively [1]. This showed the ability of finding oil spills from the given

image patches and highlighted the possibility of building an efficient oil spill detection system on regular SAR acquisitions

based on the trained detector.

To illustrate how oil spills are detected in the oil spill detection subsystem, a selected case at 03:43 on 24 June 2019, with not

only oil spills but also some other phenomena which appeared as dark formations, is used in the following. Figure 2(a) shows

the detections from the trained detector. However, there are lots of false alarms. As all the image patches used for training the

object detector include at least one oil spill, look-alikes were only learned as background information by the detector when

they were near oil spills. Therefore, to further improve the detector, image patches without oil spills, but look-alikes or other

remarkable features, were included in the training. Note that these image patches were not given any annotation and therefore

considered as background. Figure 2(b) shows great improvement on avoiding the detection of look-alikes by the improved

detector. Such an improved detector is applied in the oil spill detection subsystem running on a regular basis.
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Fig. 3. An example of oil spill detections in consecutive Sentinel-1 SAR data at 15:40 on 18 August 2022 and at 03:43 on the next day (in black). With
the second observation from Sentinel-1, additional information could be provided to validate and correct the trajectory forecast. The trajectory of the original
simulation for 12 hours after the first observation is displayed in blue, and the corrected one is shown in green.

After the oil spills are detected, they are segmented into binary masks and delivered to the MEDSLIK model for trajectory

simulation. It uses daily forecasts of synoptic conditions and generates hourly estimation of the slick trajectory. The trajectory

simulation shows users the possible areas influenced by oil spills in the next few days. In some cases, the revisit time is short

enough so that consecutive passes detect the same oil spill at different stages of its trajectory. In these cases, the new detection

can be easily attributed by the users to the older detection and they may use the new information to validate the trajectory

forecast. The system also provides an option to correct the simulation with the new location. This can be done internally

in MEDSLIK, which adds a velocity modification computed from the displacement vector between the centroid of the new

observation and the corresponding location in the original simulation. Alternatively, the system can search by external iteration

for the optimal velocity modification. This is suitable when the spatial variation of the velocity (e.g. strong shear, circulation

around bays or islands) makes the internal correction method inaccurate. As an example, Figure 4 illustrates a user-made

simulation with internal MEDSLIK correction based on the new observation. The black oil spill binary masks shows the

observations from Sentinel-1 at 15:40 on 18 August 2022 and the consecutive observation after 12 hours. The unmodified

velocity in the original simulation (in blue) was westward with shear such that there is stronger velocity at the south of the

slick. The corrected simulation (in green) pushed the slick southwest towards the observation. However, the resulting shear

caused incorrect deformation of the slick.

IV. CONCLUSION

An automated and operational oil spill detection system was demonstrated and integrated into an early warning system in

the Southeastern Mediterranean Sea for minimizing the environmental impact of oil spill events. The whole system is currently

operating on a regular basis, which helps reduce the time spent on manual check and annotation. Based on the estimated

slick trajectory, further information, which is often needed for large oil spills but not derivable from SAR, such as oil type

and oil thickness, can be gathered with different sensors. Afterwards, strategies for combating the oil slicks can be developed

according to oil type, sea state, the habitats of the influenced regions, available response resources, and so on. To avoid false

alarms, the system requires manual confirmation before sending a warning to the corresponding decision makers. Further

detailed analysis on performance regarding detectability, false alarm rate and accuracy of the numerical forecasting is required,

but the feasibility of building an automated oil spill detection system is shown. Continuous tracking of small slicks can be

used in future studies, to deduce velocities which will be assimilated back to correct the circulation model. Furthermore, with

the experience of building such a system for the Southeastern Mediterranean Sea, extending the study area to global oil spill

hotspots is foreseen.
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Detection of marine oil-like features in Sentinel-1 SAR images by supplementary use of deep learning and empirical 

methods: Performance assessment for the Great Barrier Reef marine park. 

 

Abstract 

Continuous monitoring of oil discharges in coastal and open ocean waters using Earth Observation (EO) has undeniably 

contributed to diminishing their occurrence wherever a detection system was in place, such as in Europe (EMSA's 

CleanSeaNet) or in the United States (NOAA's OR&R). This presentation will showcase the development and testing of 

a semi-automated oil slick detection system (Figure 1) tailored to the Great Barrier Reef marine park solely based on 

Sentinel-1 SAR data as no such service was routinely available in Australia until recently. We will also present portions 

of a large, curated, historical global dataset of SAR imagery (Figure 2) acquired by Sentinel-1 SAR that we have made 

publicly available specifically for the development and testing of deep learning models for marine oil-features 

detection. In this study, three different methods, namely a rule-based empirical approach, a deep learning model and 

a combination of the two in sequence, have been tested to discriminate between oil-like features and look-alikes (e.g 

Figure 3) in the scenes acquired over the marine park. We will show that the classifiers perform best when both the 

empirical and deep learning methods are combined, rather than when used separately. This study will demonstrate 

the benefit of sequentially combining classifiers to improve the detection and monitoring of unreported oil discharge 

events in SAR imagery. The workflow has also been tested outside the marine park, and examples applied to other 

regions such as Australia's Northwest Shelf and Southeast Asia will complement this presentation.  

 

Key highlights 

• Development of a semi-automated oil-like features detection system using C-band Sentinel-1 SAR. 

• Classification of oil-like features based on a sequential approach combining machine learning and rule-based 

methods. 

• The proposed approach achieves reliable oil-like features detection in the Great Barrier Reef marine park. 

• An image dataset suitable for deep learning model development is made available publicly to the community. 

 

 

 



Figures 

 

Figure 1 The study summarized in a 3-image sequence. 

 

 

Figure 2 The CSIRO oil spills database: locations of oil spill events with matching SAR imagery from which the 400x400 pixel chips dataset has 
been derived and can be used for deep learning model development. (Publicly accessible at https://data.csiro.au/collection/csiro:57430 ) 

 

 

Figure 3 Trichodesmium spp. surface bloom event seen in coincident acquisitions by Sentinel-1A SAR and Sentinel-3A OLCI scenes on the 28 
September 2016. 

1

2

3 4

5

7
6

Gladstone

Camp Is.

(a) (b) 

(c)

Land mass

Land mass

S-3A OLCI acquired on the 28th Sept 2016
at 09.35am (AEST)

S-1 SAR acquired on the 28th Sept 2016
at 05.20am (AEST)

https://data.csiro.au/collection/csiro:57430


SEASAR2023 – Extended Abstract 

A feasibility study into the use of high-resolution Synthetic Aperture Radar (SAR) as a novel way of 

identifying Aids to Navigation 

Scott Kaczor & Sara McGourty - Remote Sensing Team, United Kingdom Hydrographic Office 

There is an operational need to identify, position and monitor navigational buoys and beacons in 
distant or remote locations where persistent cloud cover precludes the use of optical imagery. Aids to 
Navigation (AtoN) vary in material composition and size therefore Sentinel-1 is of insufficient 
resolution to detect these smaller features (Figure 1). Launched in 2018, NovaSAR-1 was developed 
by SSTL (Surrey Satellite Technology Ltd) and AIRBUS and operates in S-Band frequency (Bird et al 
2013, Whittaker et al 2021, Zhou et al 2020). In this investigation the higher resolution 6 m Stripmap 
product has been assessed for its performance in detection of AtoN. Backscattering from objects on a 
comparatively smooth horizontal sea surface will be expected to appear as bright targets in a SAR 
image. This has proven successful for the detection of larger objects such as ships where it has become 
a tried and tested approach (Crisp 2004, Iervolino et al 2013, Achiri et al 2018). Little research has 
been undertaken on applying the same methodologies to detecting smaller objects. This study utilises 
higher resolution SAR now that it has become more widely available.  
 
This study posed the following questions: 

1. Is high resolution S-band NovaSAR-1 suitable for detection of AtoN? 
2. Does the physical size, shape, and construction material of the AtoN impact detectability?  
3. Is there a limiting set of sea-surface conditions under which AtoN are no longer distinguishable from ambient 

sea surface roughness? 
4. Is there a preferred combination of sensing parameters?  
5. What is the horizontal positional accuracy of NovaSAR-1 without GCPs and to what degree would GCPs 

improve positional accuracy? 
6. Is there correlation between presence of a radar reflector on the AtoNs and their visibility in NovaSAR-1? 
 

Based on results from a selected range of AtoN present in Plymouth Sound and entrance to Tamar 

River, AtoN can be detected with NovaSAR-1 but not consistently or predictably. The size, shape, 

material, and angle at which the radar pulse reaches an AtoN are all influential in strength of the 

backscatter signal and therefore in its detection. Beacons such as Figure 1.A a steel pile with radar 

reflector resulted in a strong signature, the vertical nature of the construction produces a backscatter 

double bounce and possible volume scattering due to the complexity of its shape (Figure 2.A). The 

simpler form of the steel Admiralty Mooring Buoy with no radar reflector (Figure 1.H) elicits a much 

weaker backscatter signal (Figure 2.H) however this may also be due to orientation to radar pulses at 

time of image collect. 

 

The evidence provided by assessment of weather conditions concurrent to the collection dates and 
times of the SAR images suggest weather conditions specifically windspeed have the most significant 
impact on detection. The increased surface roughness or ‘sea clutter’ due to wind reduces the contrast 
in backscatter between the surrounding water and AtoN decreasing the likelihood of positive 
identification (Figure 3). This may be exacerbated by relative directions of wind and tidal stream and 
can be localised across an image. 
 

The images captured at night on a Descending orbit provided best results, this is assumed to be an 
artefact of the likelihood of lighter winds in coastal regions during the night resulting in smoother sea 
surfaces. HH polarity images provided most positive results, this is as expected from previous studies 



but can also be linked to incidence angle (Crisp 2004: 21; Saini et al 2020: 117). With multiple 
combinations of environmental and geometric parameters affecting backscatter (Crisp 2004: 20-23), 
due to the small sample size of images in this study further investigation will need to be done to assess 
the impact of this with S-band NovaSAR-1. 
 
The main issues have been quantifying the visibility of small structures and making this systematic 
when structures are variable in form, size, and material. A more significant number of images need to 
be assessed now it is clear objects such as AtoN are visible in high resolution S-band NovaSAR-1. A 
further study in a new geographic area is being undertaken to identify if these results can be replicated 
and improved on, identifying a method for quantifying visibility would reduce error in interpretation 
of results. Sea state was not measured directly at the time of capture due to a lack of appropriate 
instrumentation installed in the Plymouth locale. However, it has become possible to collect 
concurrent sea state data by GNSS Reflectometry (Yu et al 2022). This would allow sea surface 
roughness and its effects on image contrast to be assessed objectively in future studies.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A – H show examples of the range of shapes, sizes and construction materials of AtoN in 

Plymouth Sound (Images©Sara McGourty). 

Figure 2. Example profile plots showing differences in strength and pattern of radar backscatter 

between forms of AtoN: Beacon A (Figure 1.A), Admiralty Mooring Buoy H (Figure 1.H)  
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Figure 3. AtoN 9 to 13 visible in NovaSAR-1, the ‘sea clutter’ return from turbid water could mask 

backscatter signals from AtoN 11 without supporting ground truth data. 
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SAR observation of internal waves generated by sub-mesoscale frontal features in the 
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1. Introduction 

SAR images acquired over the ocean from space have turned out to be game changers in 

internal wave research. It were Seasat SAR images that revealed for the first time that 

internal waves (IWs) are generated in the Strait of Messina (Italy) and that IWs are abundant 

off the coast of Portugal. Later satellites carrying SARs, among them ERS, Radarsat, ALOS, 

and Envisat detected IWs many areas in the World Ocean where the presence of IWs was 

not known before (Jackson, 2004). Based on these satellite observations, theoretical models 

have been developed to describe the generation and propagation of long-wavelength IWs 

generated by interaction of tidal flow with bottom topography.  However, in the last years 

several authors  suggested that short-wavelength  (0.1 – 1 km) IWs may also be generated by 

sub-mesoscale features in the ocean without any external forcing, e.g., at sharp density 

fronts or by sub-mesoscale eddies (SMEs). In this regime, large strains and shears occur that 

should can give rise to emission of IWs. Several mechanisms have been proposed to model 

their generation, which include: 1) spontaneous generation in unbalanced, large Rossby 

number flows in the absence of direct forcing (Shakespeare and Hogg, 2017, 2018), 2) 

generation from a thermally stratified diurnal warm layer by Kelvin-Helmholtz instability 

(Wijesekera et al., 2020), and 3) generation from a turbulent mixed layer by the ‘‘mechanical 

oscillator effect’’ (Ansong and Sutherland, 2010) or the ‘‘obstacle mechanism’’ (Clark et al., 

1986; Czechel and Eden, 2019). However, all these theories suffer from the fact that they are 

difficult to verify by means of observational data, since the phenomena have small scales 

and are very intermittent. Here we present Sentinel-1 SAR images, in conjunction with SST 

images, acquired over the Adventure Bank (AB) in the Strait of Sicily, showing sea surface 

signatures of short IWs generated by SMEs and filaments. Filaments are elongated structures 

of cold water (typically 100 km long and 10 km wide) that extend from the south coast of 

Sicily southwards into the Strait of Sicily, which are generated in the wake of upwelling 

events at the southern coast of Sicily. They become visible on infrared and optical images as 

bands of reduced SST and enhanced Chl-a values, respectively, and on SAR images as bands 

of reduced radar backscatter. 

2. Oceanography of the study area. 

The Adventure Bank is a shallow area in the western section of the Strait of Sicily, with an 

average depth of 80-100 m and a steep slope, in particular to the west and the south. Its 

topography is quite rough (due to its volcanic origin) with several small shallow (less than 50 

m) bumps with width of order 1 km. In summer and early autumn, there is a strong warm 



upper layer with an average depth of about 20 m present over the AB. The depth of this 

layer varies greatly with time and position and can attain values as thin as 5 m. The tidal flow 

in the AB region, which has a mix of diurnal and semi-diurnal periodicity, is generally quite 

weak (about 10 to 20 cm/s). Upwelling occurs between June and October typically 5 to 10 

times each year, following strong northwesterly wind events, in particular Mistral outbreaks, 

issuing from the Gulf of Lions (NW Mediterranean Sea) and blowing along the south coast of 

southern Sicily. 

3.  Example of internal waves associated with a filament 

Fig. 1a shows an SST image acquired over the AB on 13 July 2021 at 20:05 UTC. Visible is a 

filament as a band of reduced SST values (greenish color) emanating from the upwelling area 

at the southwest coast of Sicily and terminating in a mushroom-type feature. Fig. 1b shows a 

section of a Sentinel-1A image acquired over the area marked in Fig. 1a by a red rectangle on 

13 July 2021 at 20:05 UTC. The darkish area is the area of cold surface water representing 

the filament. Internal waves are radiating from is sharp western boundary. The sharp front is  

a result of frontal sharpening. 

 

 

 

 

 

 

 

 

 

Fig. 1. a) Sentinel-3B SST image (SLSTR) acquired over the northwestern section of the Strait of Sicily 

on 13 July 2021 at 20:05 UTC; b) Sentinel-1A image acquired over the section marked by a red 

rectangle in Fig. 1a on 13 July 2021 at 17:13 UTC. 

 

Fig. 2 shows two SST images acquired at a time separation of one day. Together with Fig. 1a, 

they demonstrate the strong dynamics of the filament. Its shape and position varies strongly 

from day to day causing a strong lateral displacement of cold water.    

 

 

 

 

 

 

Fig. 2. a) Sentinel-3A SST image of 14 July 2021 at 21:13 UTC; b) Sentinel-3A SST mage of 15 

July 2021 at 20:47 UTC. Color scale in o C 
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4. Example of internal waves associated with a sub-mesoscale eddy 

Fig. 3a shows a GHRSST SST image acquired over the AB on 28 June 2017. Visible is a filament 

as a band of reduced SST values (yellow color), which terminates to the south in a broad 

patch (marked by a rectangle), which we interpret as the SST signature of a cyclonic SME. 

Cyclonic SMEs are a common phenomenon at the end of filaments, as often observed by 

their spiral arms on high-resolution Sentinel-3 SST images, which unfortunately are not 

available on this day. Fig. 3b shows a section of a Sentinel-1B SAR image acquired on the 

same day over the area marked by a black rectangle in Fig. 3a. At the time of the SAR data 

acquisition, a southeasterly wind of 2.5 m/s was blowing, which provided optimal conditions 

for SAR imaging of IWs. The position of the center of the area of reduced radar backscatter 

corresponds closely to the position of the center of the patch of slightly decreased SST 

values in the area marked by a rectangle in Fig. 3a. We interpret the dark patch as sea 

surface signature of an SME, where cold water rises to the sea surface and where the 

stability of the air-sea interface changes, which causes a reduction of the radar backscatter. 

Furthermore, we interpret the surrounding semi-circular wave pattern as the sea surface 

signature of IWs generated at the border of the rapidly moving SME.  

 

 
Fig. 3. a) GHRSST SST map (in °C) of 28 June 2017 showing a broad upwelling filament characterized 

by lower SST values than in the surrounding waters; b) Section of the Sentinel-1A SAR image acquired 

on 28 June 2017 at 17:12 UTC over the area marked by a dark rectangle in Fig. 3a. 

 

5.  Discussion 

The analysis of Sentinel-1 SAR images acquired in the years between 2017 and 2022 over the 

Strait of Sicily has yielded the result that radar signatures of short-wavelength (0.3 - 1 km) 

IWs are present (1) only in the shallow AB region and its immediate surroundings, (2) only in 

the months between June and October, and (3) only near filaments and SMEs, which evolved 

over the AB after upwelling events along the south coast of Sicily. Their position does not 

show any periodicity or any relationship to prominent bathymetric features. 

The observations suggest that the lateral motion of cold water within the filaments/SMEs is 

instrumental in their generation. When comparing position of the western boundary of the 

filament in the area marked by a red rectangle in Fig. 1a with the one in Fig. 2a, one obtains 

the result that it has shifted by 19 km in 24 hours. This implies a horizontal speed of the cold 

water of 0.22 m/s. This speed is much larger than the vertical speed of upwelling water, 

which is usually ≤ 5 m/day. Thus, we hypothesize that the rapid horizontal displacements 

and deformations of the upwelling front cause a perturbation of the pycnocline, which leads 

to generation of IWs. This generation mechanism has some similarity with generation of IWs 

by a river plume impinging into the ocean waters (Nash et al., 2005).   
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Oil spills on the sea cause dark patches in C- and X-band Synthetic Aperture Radar (SAR) imagery, because they damping 
small-scale surface waves that are responsible for the radar backscattering. The wave damping, hence the radar contrast, is less 
pronounced at L-band, except for thick parts of the oil spills [1]. On global scales, the main source of marine oil pollution is 
operational ship traffic, though static sources such as oil seeps or oilrigs may also contribute. Routine oil-pollution monitoring 
of the western Black Sea using SAR imagery is being done through the CleanSeaNet System of the European Maritime Safety 
Agency (EMSA) [2]. There was, however, no static oil-pollution source reported for the Bulgarian Black Sea coast. 
 
On 1 July 1921, the US cargo steamship SS Mopang sank off Sozopol on the Bulgarian Black Sea coast, close to the city of 
Burgas, after hitting a sea mine that was left from World War I. After the ship wreck had been lying at a depth of about 30 m 
for almost one century, in August 2018, local newspapers reported an oil leakage that was observed after a period of strong 
winds and currents in that area. Heavy fuel, of which the SS Mopang had originally loaded 650 tons, was leaking out of the 
wreck’s tanks. 
 
 

 
Figure 1. Map showing the location of the wreck of the SS Mopang on the Bulgarian Black Sea coast. The red square marks 
the position of the SAR image fragments shown herein. 
 
 
We used 16 years of spaceborne SAR imagery, acquired between 2006 and 2021 by Sentinel-1A/B SAR-C, ALOS-1/2 
PALSAR-1/2, and Envisat ASAR, to investigate for how long, and under which conditions, heavy fuel was leaking out of the 
wreck. The oil spill of the SS Mopang was visible on more than 100 SAR images; however, we could not find it on every SAR 
image acquired in the area, which implies that either the leakage of heavy fuel occurred only sporadically, or a continuous 
leakage of oil could not be seen on every SAR image. Figure 2 shows three examples of SAR images of the Mopang site, all 
showing manifestations of the heavy fuel leaking out of the ship wreck. 
 



   
Figure 2. Three examples of SAR images of the Mopang site, acquired in 2018, 2016, and 2006 (left to right) and showing 
manifestations of the heavy fuel spill; image dimensions 16.6 km × 16.9 km. Left: ALOS-2 PALSAR-2 image acquired on 8 
July 2018; middle: Sentinel-1A SAR-C image acquired on 9 September 2016; right: ENVISAT ASAR image acquired on 15 
September 2006. Red arrows mark the position of the SS Mopang. 
 
 
Further analyses revealed that oil spills, which could be attributed to the Mopang wreck, were detected only in the warmer 
season, from May to November, when the temperature of the bottom water layer exceeded 10 °C (Figure 3). Apparently, under 
these conditions the heavy fuel’s viscosity was low enough to allow for its leakage and subsequent rise to the sea surface. In 
contrast, during colder months, when the bottom temperature was below 10 °C, the viscosity of the heavy fuel was too high 
and hence, we did not find any manifestation of the Mopang spill on SAR imagery acquired from December to April. 
 
 

 
Figure 3. Seasonality of SAR image manifestations of the Mopang spill. The orange bars denote the number of manifestations 
in the respective months, the dashed and solid blue curves denote the mean water temperature and sea bottom temperature, 
respectively, in the area of the ship wreck. 
 
 
We found similar patterns of the environmental conditions for all cases, in which we observed a Mopang spill on SAR imagery: 
periods of high winds, resulting in high sea state, were always preceding each oil spill detection, which implies that some 
mechanical action on the wreck’s hull was needed to initiate further leakage. In addition, we always found a decrease in 
significant wave height, wind and current conditions shortly before the SAR image acquisition. We therefore hypothesize that 



a period of increased mechanical stress on the wreck’s hull was needed to force the leakage of heavy fuel, but that calmer 
conditions at the time of the SAR image acquisition were needed, likely to prevent the leaked heavy fuel from being mixed 
with sea water without forming a coherent spill at the sea surface, manifesting on the SAR imagery. 
 
In cases when the Mopang spill also showed up on L-band SAR imagery, the leakage of heavy fuel must have been strong 
enough to form a thick oil spill that caused a detectable contrast on L-band SAR imagery. Estimates of the spill’s thickness, 
however, were not possible. 
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Synthetic aperture radar (SAR) is used to identify mineral oil spills at sea based on the contrast between the clean seawater and 
the surface slicks, which appear radar-dark [1]-[4].  The ocean contrast in SAR imagery is also used for other purposes [15] 
[30], e.g., to locate and characterize sea ice (see, e.g., [5]-[8], and in combination with optical data to monitor biogenic slicks, 
which are related to circulation, biological activity, and water quality [9] [10] [20] [31].  Furthermore, as the sea ice recedes 
and shipping potentially expands in the Arctic [11]-[12], there will be an increasing need to distinguish oil spills from young 
ice types that also appear radar dark [13]-[14], and to investigate oil transport in combination with sea ice [26].  
 
Monitoring the ocean to identify and differentiate oil spills, marine slicks, and sea ice are all activities undertaken by operational 
agencies, and trained operators are frequently employed to distinguish the desired signal from a host of potential false positive 
signals[15]. Many SAR satellites are used by agencies to identify and monitor slicks, but are not sensitive to oil characteristics 
like thickness because the returns from the slicks are near-to-below the instrument noise floor [20] [21]. However, low noise 
SAR sensors have now demonstrated some sensitivity to the thickness and emulsification of mineral oil slicks on the ocean 
surface (e.g., [17]-[19]), so there is the chance to obtain additional information from SAR about the type and amount of material 
in the slicks. With ever-increasing SAR data volumes, the oil spill monitoring activities need to improve the automation of 
SAR processing.  
 
Here we briefly describe a simple method for identifying radar-dark features in a SAR scene of the ocean and apply it on SAR 
imagery, demonstrating the ability to automatically delineate geometrically complex slicks from mineral oil and HABs. The 
method does not require a training data set or any other ancillary information, and is sufficiently general that it can be applied 
to any parameter used for distinguishing one feature from another on the open ocean, e.g., polarimetric decomposition products 
[16].  The contrast is then used to classify the radar-dark features based upon degree of contrast.  For characterizing mineral oil 
slicks, the contrast in the VV-polarization normalized radar cross section (NRCS) is used because of that parameter’s sensitivity 
to thickness or oil volumetric fraction [17] [25] [27].   
 
The method starts by calculating the damping ratio (DR) [28] based upon the statistics of the ocean NRCS values in the scene.  
A mask is then needed to exclude any land areas in the scene. The DR is calculated as the ratio of the measured NRCS, 𝜎, to 
that of unslicked (clean) water, 𝐷	 =	𝜎

"#$%&
𝜎% .  To calculate the DR, the clean water pixels must first be identified, ideally 

automatically and for any scene regardless of the complexity of the dark feature patterns.  Here this is addressed using a 
statistical analysis, as described in [22], which can identify clean pixels even under challenging conditions.  The clean water 
pixels show up as a peak in the probability distribution function, with the radar-dark pixels in the lower NRCS tail of the peak 
or in one or more peaks of lower NRCS, depending upon the extent of the scene covered by radar-dark features and the number 
of different types of phenomena that they represent. For slicks and PDFs with multiple peaks, the peak at the highest NRCS is 
identified as clean water.   Generally, ships or structures and radar-bright fronts constitute relatively few pixels and show up in 
the high value tail of the clean water peak.    High confidence clean water pixels are identified as those with values in a narrow 
band centered on the clean water peak value, and are used in calculating the DR for all pixels in the scene. Here we present 
three examples applying the method to airborne UAVSAR L-band images and a Radarsat-2 C-band image. Fig. 1(a)-(c) shows 
an example of the NRCS, the clean water mask, and the DR, generated automatically based on UAVSAR [29] data of oil slicks 
in the Gulf of Mexico.  Note that the clean water mask at this point does not indicate where the slicks are, i.e., its complement 
is not the dark feature mask, but rather it identifies those pixels that represent the mean clean water NRCS.  Fig. 2 shows the 
DR calculated for slicks from algal blooms in the Baltic Sea, derived from C-band Radarsat-2 images, and Fig. 3 compares the 
results from this algorithm applied to L-band UAVSAR data with PlanetScope imagery analyzed by the NOAA NESDIS 
personnel and reported in a Marine Pollution Surveillance Report. 
 



At this stage the DR, calculated automatically, can be used by an analyst to manually identify features of interest, as in the 
example shown in Figure 3.  However, the automated process can be taken a step further to make a dark feature mask and 
classify those pixels based upon intensity as an aid for analysis, a quick-look product for responders, or training data for 
machine learning algorithms.  In Fig. 1(d), we show an example relative thickness classification of mineral oil slicks shown in 
Fig. 1(a).  The DR is first classified using an unsupervised classifier (e.g., [23] [24]), and thereafter the slick/dark feature classes 
are selected based upon their mean and standard deviation relative to those of the clean water peak. These classes form the 
initial masks for clean water and slicks, which are then refined by removing pixels from the oil mask whose DR values fall 
within 2 SD of the clean water mean.  Because the clean water mean is DR=1 in theory, this also provides a quality metric for 
the clean / oil separation. Finally, the oil pixels are classified based upon their DR values.  The classification is adaptable in 
number of classes and thresholds, the latter of which are set based upon percentiles given the PDF of DR values for the oil 
pixels.  Further analysis on validating the relationship between these classes and thickness, and on whether this classification 
can be used to differentiate mineral oil slicks from false positives is needed.  
 
This kind of classification product could aid trained operators in identifying spills from SAR data of any frequency band, and, 
because the algorithm is fully automated, could be implemented to generate near-real-time (NRT) products to help direct 
responders as soon as remote sensing data is available, significantly reducing latency in providing preliminary assessments to 
field crews.  Furthermore, because it works for all commonly available SAR frequency bands, the algorithm can be applied to 
any data, expanding the number of scenes that can readily be processed in NRT.   
 

 
Fig. 1. (a) UAVSAR L-band VV-polarization image acquired on 6 Sept 2021 showing mineral oil slicks off the coast of 
Louisiana near Port Fourcon, the site of Hurricane Ida landfall on 29 Aug 2021. (b) The clean water mask identifying high 
confidence clean water pixels in white.  (c) The calculated damping ratios. (d) Relative thickness classes for the oil slick derived 
from the damping ratio.  Class thresholds were set based upon the distribution of the damping ratio values for pixels identified 
as oil, for the case shown having the lowest 50th percentile of the values in Class 1 and the highest 2% of values in Class 6. 
 

 
Fig. 2. (a) Radarsat-2 VV-polarization image acquired on 10 July 2017 showing slicks from algae in the Baltic Sea. (b) Damping 
ratio derived automatically. 



 

 
Fig. 3. (a) UAVSAR L-band VV image acquired on 1 Sept. 2021 1640 UTC near the location of the scene in Fig. 1 and (b) the 
calculated damping ratio, compared to (c) a NOAA Marine Pollution Surveillance Report derived from Planet optical imagery 
acquired 10 minutes earlier (shown) and (d) the analyst's delineated slick. The DR from the UAVSAR image shows the same 
delineated slick, but with more damping to the south than the north, and other slicks / radar-dark features to the south, which 
are also visible in unclouded areas in the PlanetScope image.  Note that based on the DR alone, one would conclude that the 
thicker oil is to the south compared to the expert's identifying possible thicker oil at the north end of the slick. [MPSR image 
from NOAA]   
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1. Introduction 

Ship wake retrieval using satellite imagery is one of the most useful applications for obtaining insights of moving vessels. 
Environmental monitoring, high-dimensional mapping, and ship tracking are just a few of the key applications that can benefit 
from the exploitation of such task. Regarding the ship tracking, this represents one of the primary reasons for the importance 
of ship wake detection as it allows for the monitoring of ship movements and activities. Indeed, ship wakes may reveal valuable 
information concerning vessel's speed, direction, and even its size and category [1]. This is especially valuable for marine 
applications such as port security and coastal surveillance, where it is critical to monitor ship movement to prevent smuggling, 
illicit fishing, and other types of maritime crime. Contrarily to optical sensors, the Synthetic Aperture Radar (SAR) imagers 
enable an all-weather and all-time detection capability [2]. Nonetheless, several problems arise when finding ship wakes in 
radar images mainly due to the presence of speckle noise. This one can interfere with the detection of ship wakes and make it 
difficult to extract useful information. To overcome this challenge, various methods have been proposed that exploit the linear 
characteristics of ship wakes and transform the lines in the spatial domain into bright or dark points in a transform domain, 
such as the Radon or Hough transforms [3]–[5]. However, such kind of approach assumes wakes as linear features which is not 
always true in practical in scenarios near coasts where ships typically change their route. It must be also considered that different 
wake appearances are produced by the coherent radar focusing mechanism, further complicating the detection problem.  
Currently, the insurgence of Artificial Intelligence (AI) has reached the remote sensing community, and Deep-Learning (DL) 
techniques for detecting wakes are present but still few in literature [6]–[8]. The topic is addressed in this paper by a different 
perspective, i.e, analysing the possibility of exploiting multifrequency multitemporal acquisitions to reconstruct ship route. To 
the knowledge of the authors, this research represents the first attempt of using AI for the sake of wake detection exploiting 
multi-temporal, multi-frequency, and multi-mission SAR data. The paper contributes in this under-studied topic illustrating a 
preliminary application of route reconstruction using mulitemporal multifrequency SAR data. 

2. Method 

In the field of computer vision, the identification of multiple instances within a single image goes under the task of Object 
Detection (OD). An OD architecture is built on top of a standard convolutional neural network (CNN) by adding a regression 
problem for bounding box detection around the objects. Region-based CNN (R-CNN) [9] was the first architectures developed 
for OD, which used region proposals or Regions of Interest (RoIs) to extract features from the image. R-CNN has mutated into 
countless architectures, but OD networks generally consist of three modules: a) the backbone, which collects image features; 
b) the neck, which links the backbone to the head; and c) the head, which classifies and detect image objects. The backbone 
can be a plain stack of convolutional and pooling layers, or a more engineered network such as EfficientNet [10] and ResNets 
[11]. As the number of output channels grows, the output size of feature maps decreases, generating a pyramidal structure. The 
neck module combines information at various scales, while the head module identifies and localizes picture objects. The 
proposals for the objects can be created using various processes, such as anchor boxes, keypoints, or transformers, and based 
on the proposal step, one-stage or two-stage detectors are often distinguished. The head module may include of basic 
convolutional layers or sophisticated DL ideas, such as transformer decoders. Typically, the loss function used for optimization 
is tailored to each model and is dependent on the proposal method and head layers. For the sake of route reconstruction, the 
architecture of Mask R-CNN was selected for the problem at hand. The backbone is ResNet-50 being a good trade-off between 
accuracy and efficiency. 
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3. Results 

We train the model on the dataset of [6] with a hyper-parameter tuning strategy based on a grid-search algorithm. The learning 
rate varies in the range 2×10-2  and 5×10-4 with different scheduler, e.g., linear, stepwise, cosine-annealing. Regarding data 
augmentation, the same transforms techniques of [6] have been adopted. In the end, the model reached a mAP (mean Average 
Precision) of 83% for an Intersection over Union (IoU) of 0.5.  

Presenting a practical application of route reconstruction, the Figure 1 shows the detection results of the same ship wake in two 
SAR images. Specifically, the first image is from COSMO-SkyMed (X-band, HH polarization) and the second one from 
Sentinel-1 (C-band, VH polarization) gathered at 17.04 and 17.13 CET, respectively. Products are paired from the dataset of 
[12] and have been gathered over the Egadi Islands on the 23 August 2020. The images have been complemented with ancillary 
AIS (Automatic Identification System) provided by [13]. Indeed, the Figure 1 reports a zoomed view referring to the same ship 
(MMSI: 247294400) which is a high-speed craft travelling at 10.28 knots with a course over ground of 166.5°. Essential to 
note is that these products come as SLC (Single Look Complex) differently from the GRD (Ground Range Detected) of the 
dataset of [6]. Nevertheless, still the model generazibility can recognize the visual pattern of a ship wake. As shown in Figure 
1, multifrequency data reveals how the same wake appears differently under two frequencies (and polarizations). In addition, 
the route reconstruction is demonstrated thanks to the disposal of multifrequency multitemporal data allowing for discretizing 
the ship route in two non overlapped time frames. 

 
Figure 1 Route reconstruction by wake detection in multitemporal multifrequency SAR data. [a) COSMO-SkyMed (1418705), b) Sentinel-
1 (S1A_IW_SLC__1SDV_20200823T171258_20200823T171325_034037_03F36B_5D18)] 

The map in Figure 1 also reports a common route (dotted blue line) from the Favignana Island. This was reported purposely to 
show how the extracted wakes perfectly match it. This result hold significance demonstrating that ship wakes are not only a 
marker of the vessel presence but can be leveraged to gain knowledge of past movements of the vessel under analysis. In the 



 Del Prete et al  

 3  
 

wake imaged by Sentinel-1, the distance between the wake vertex and the end of the visible wake is about 3 kilometres (i.e., 
wake vertex coordinates are 37°48'42"N, 12° 24'11"E, end of wake coordinates are 37°50'22"N, 12°23'34"E). Because the 
ship's velocity is 10.3 knots, the wake describes the ship locations starting around 9.45 minutes before the SAR acquisition. 
The upper tile is gathered by CSK, and the ship wake is 4.6 km long (i.e., 14.7 minutes). As a result of the synergic exploitation 
of consecutive photos (particularly of wakes captured in these photographs), the ship may be tracked from 16:50 (14 minutes 
before 17:04) to 17:13 as if the ship was continually providing AIS data. 

4. Conclusions 

The paper has addressed the ship wake detection problem from SAR images reporting a benchmark of several state-of-the art 
object detection network, both single- and multi-stage, anchor-free and anchor-based. Evidence on the different backbones 
analysed highlight how the problem is far away from the traditional OD for camera images. Finally, the first application of 
route reconstruction has been presented. The generalization capability of DL is exploited to detect the same wake gathered in 
two radar frequencies reporting how two acquisitions are much more than merely instantaneous marine images obtained at two 
epochs. Results show how the detected wakes can reconstruct ship route using multitemporal multifrequency images. In 
conclusion, this study demonstrates the potentialities of a synergic exploitation of SAR data for ship tracking.  
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Abstract-The growth of coastal megacities (those with populations of more than 8 million 

people) is concentrating populations in hazardous places, particularly in developing 

countries such as Pakistan. Similarly, more cities are expected to grow/develop along the 

coast of Pakistan such as the Baluchistan coast (Pasni, Omwara, Sumiani and Gwadar). 

These coastal areas are expected to be most vulnerable to seawater intrusion. The 

vulnerability of any coastal area increases with increasing land subsidence, deteriorating 

water drainage system, increase in sea level and local seismic activity (Elshinnawy & 

Almaliki, 2021). 

Interferometric Synthetic Aperture Radar (InSAR) has become one of the most important 

and useful methods for the estimation of ground (Kumar et al., 2020; Ramzan et al., 

2022). The enriched availability of new SAR tools and satellite collections has encouraged 

a solid development of processing procedures such as finding the small ground 

deformation signals linked to the different phases of the seismic cycle (Ali et al., 2021). 

Interferometric synthetic aperture radar (InSAR) is a radar technique that uses two or 

more synthetic aperture radar (SAR) images to produce images of surface deformation. 

This technique can measure sub-cm changes in deformation over spans of days to years 

(Ali et al., 2018; Lu et al., 2020). Interferometric Synthetic Aperture Radar (InSAR) is an 

effective way to measure changes in land surface altitude. InSAR makes high-density 

measurements over large areas by using radar signals from Earth-orbiting satellites to 

measure changes in the land-surface altitude at high degrees of measurement resolution 

and spatial detail (Khan et al., 2020).  

The wide point in this study is the investigation of the potential significance of ground 

deformation for structural damage applications by measuring the magnitude and extent 

of surface deformation in the Makran subduction zone (Pasni, Omwara, Sumiani and 



Gwadar) and the impact of Sea Water Intrusion to the land subsidence along the coastal 

areas. The coastal area of Pakistan lies in a high-risk zone. Disaster can strike anywhere 

related to drought, earthquake and tsunami. Indus Delta is facing many problems due to 

increasing seawater intrusion under prevailing climatic change where land deformation 

can augment its vulnerability. Therefore, this study will be helpful to assess the extreme 

changes in the coastal dynamics. 

 

Figure 1: Map shows the study area (Coastal area of Pakistan) with regional tectonic 

margins of western Pakistan (Makran Subduction Zone). 
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Three field campaigns were conducted in the Santa Barbara oil seep region in 2021-2022 with the goal 
to develop a quantifiable approach for determining the thicker components of oil spills using microwave 
synthetic aperture radar (SAR) imagery to be utilized in an operational context to guide clean-up efforts. 
The challenging aspect of quantifying the thickness of oil on water is that oil is thin – order 10-100 µm, 
with the operational goal of identifying thickness >=50 µm, which is the threshold sought by responders 
as ‘actionable’ oil. This threshold is the part of a spill to be targeted for clean-up as thicknesses above 
this threshold are most harmful to the marine environment and ecosystem. In addition to this quantity, a 
lot more information is sought about an oil spill –extent, ocean conditions and transport, spill rates, 
composition, and so on - the list is long. As was observed particularly in the long-lasting and extensive 
Deepwater Horizon in 2010, there are many potential methods to derive key oil spill properties using 
remote sensing instrumentation as well as in-situ observations. Each type of remote sensing 
instrumentation has complications and challenges arising from the underlying physics of the sensing 
method as well as the environment and the oil itself. Flying the L-band NASA-UAVSAR during the 
Deepwater Horizon spill has led to a series of efforts to quantify oil thickness properties with field 
efforts, as well as separating oil from other marine slicks (Minchew et al., 2012; Skrunes et al., 2016; 
Jones and Holt, 2018; Espeseth et al. 2020A, 2020B). 
 
This presentation will provide an overview of the Santa Barbara seep campaigns as well as the 
validation efforts to characterize oil thickness, with the ultimate goal of developing useful SAR-based 
quantitative algorithms that can be implemented by NOAA to derive operational products. The oil seep 
area off Santa Barbara has been utilized for decades for research and is one of the early sites for off-
shore oil production.  Two large oil spills have occurred there as well, in 1969 and 2015, with the earlier 
one causing considerable environmental damage and was the inspiration for Earth Day. The known seep 
areas are extensive and well mapped (Leifer, 2019) and happen to be readily accessible by boat. The 
campaigns focused on collecting SAR imagery using the airborne L-band NASA-UAVSAR SAR 
system during rapidly repeating acquisitions while ship-based observations were being obtained using 
ship-based drone multispectral imager collections,  as well as direct oil thickness measurements and 
surface photography during the SAR overflights. Other aircraft and satellite observations were also 
obtained, as available, during each campaign. The UAVSAR provides fine resolution, low-noise radar 
imagery under all weather and solar conditions and is fully polarimetric, which enables evaluation of 
multiple methods to characterize the oil slick. The system noise floor of this instrument, considerably 
less than all satellite SAR instruments, enables a detailed examination of the zones of reduced 
backscatter caused by varying oil thickness levels. Previous campaigns have demonstrated the efficacy 



and value of combining airborne and satellite SAR together with multispectral imagery from drones to 
determine oil thickness characterization (Garcia-Pineda et al, 2020). 
 
The coastal region near Santa Barbara is subject to diurnal winds, characteristically low in the morning 
hours and increasing during the day into the afternoon, particularly in the summer months. During light 
winds, the oil spreads thinly over considerable extent, appearing as spreading slicks composed primarily 
of thinner sheens interspersed with thicker, narrow bands of brown-colored oil emanating from the 
source regions. As the winds increase, the slick area reduces as the thin sheen oil largely becomes mixed 
into the upper ocean, with the narrow bands remaining composed primarily of a range of thicker oil 
stages including emulsified oil. The narrow slicks are likely to be convergence zones indicative of 
underlying surface flow patterns, with the oil serving as tracers of the flow.  
 
To identify the thicker narrow bands, the ship-based drone was deployed for local area reconnaissance, 
detectable in real-time on the drone operator display. The vessel was then directed to the more favorable 
areas for sampling, where multispectral drone imagery was obtained as well as surface photography and 
direct measurements of oil thickness and properties where desirable.  The UAVSAR had an onboard 
processor which likewise could identity favorable slicks as well as see the vessel itself. There was 
regular communication between the UAVSAR crew and the vessel for guidance in order to optimize co-
collections. The rapid change in appearance of the ocean surface and slicks with increasing wind, as well 
as the drift of the bands, made it challenging to conduct coincident observations needed for inter-sensor 
comparison and validation.  Detailed comparisons of the drone-derived multispectral thickness 
classifications and those derived from the UAVSAR oil thickness classifications, based on using the L-
band VV damping ratio (backscatter of oil over ocean), were derived. Both collections were able to 
identify the varying range of thicknesses within the slicks (Figure 1).  
 
From these field campaigns and other coincident comparisons, an automated algorithm has been 
developed to estimate oil slick thickness, that is based on using the low-noise L-band imagery from 
UAVSAR (Jones, 2023). This algorithm can be readily applied to satellite L-band imagery as well, with 
a primary focus being on the planned launch of the NISAR mission in early 2024 and the potential for 
this algorithm to become operational.  On the satellite side, both Sentinel-1 and Radarsat-2 imagery 
were also obtained during these Santa Barbara campaigns. While these were not coincident with the 
drone and UAVSAR collections, the results based on the contrast ratio (backscatter of water over oil), 
results can be compared with the field collections for consistency. An operational algorithm for oil 
thickness has also been developed using satellite C-band SAR data and is being staged in NOAA’s SAR 
Ocean Product System (SAROPS) that currently produces SAR-derived wind speed and oil spill extent 
operationally, with the latter using the Texture-Classifying Neural Network (TCNNA) to automatically 
delineate oil versus non-oil covered areas (Garcia et al.. 2012). 
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Figure 1. UAVSAR oil thickness classification with a comparison with drone multispectral imagery and 
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I. INTRODUCTION

The maritime traffic illustrates multiple types of activities
ranging from economical to leasure activities. This traffic
induces the need of surveillance by local authorities to address
the challenges of maritime safety, maritime security, law
enforcement and fisheries control [1]. Far off the coast, satellite
observations allow collecting valuable information on the on-
going activities using a wide range of sensors, including SAR
sensors and AIS data collection. A large litterature is available
on the use of a single source of data for the surveillance of
maritime traffic for instance using SAR imagery [2][3] or AIS
information [4] alone. The synergetic use of multiple source
of data is however rapidely progressing [5]. Merging multiple
type of data allows either to derive better processing for each
data type separately [6] or a real merging of data information
to improve the overal martime domain awareness [7].

Commercial SAR satellites deliver very high-resolution im-
agery [8][9] that can be aquired on specific regions of interest
for instance for vessel detection. High-resolution observations
make the classification of vessel types straightforward as
illustrated by a large litterature on vessel classification for
high-resolution satellite imagery [10]. However, few studies
have addresse medium-resolution SAR imagery like the one
of the Copernicus Sentinel-1 SAR constellation [11]. Sentinel-
1 allows regular access to large dataset on European waters
and large areas worldwide. Delivering automated vessel clas-
sification tools on such imagery would benefit to the analysis
the maritime traffic and activities at sea.

This paper specifically adresses the vessel classification on
medium resolution SAR images from the Sentinel-1 SAR
mission and investigates the possibility to jointly exploit such
satellite imagery datasets with AIS data streams to develop a
learning-based classification framework.

In section II we present the data considered for the study. In
section III we present the overall methodology of classifica-
tion. In section IV we present the evaluation of performances.
In section V we present the conclusion and proposition of
applications of the results.

II. PRESENTATION OF DATA

The obsevation plan of the Sentinel-1 SAR constellation al-
lows to collect over ocean mainly medium resolution imagery
using the Interferometric Wide Swath (IW) acquisition mode.
This data can be made available as detected images on two

flavours being GRDM (medium) and GRDH (high) resolution.
While the GRDH products are nominally processed by the
ESA ground segment, the Collaborative ground stations can
generate as well the GRDM flavour products [2].

In this study, we make use of the GRDH products, which
has the following characteristics : a swath (rg x az [km]) of
250 x 170, a resolution (rg x az [m]) of 20 x 22 and a pixel
spacing (rg x az [m]) of 10 x 10.

CLS made available series of AIS data collected from
ground and space receivers. The AIS data collect the location
of vessels reporting their positions and information on their
speed, route, and type [12]. While the data broadcasted by
AIS can be switched off or altered, it is broadly used by the
Earth observation community as a proxy of vessel location and
type [13].

With a view to implementing deep learning strategies, we
created reference datasets using the synergy between AIS data
and Sentinel-1 SAR data. Thanks to AIS data, we estimate
the precise location of the ships in the SAR image and extract
related information contained in AIS messages metadata (in
our case, length and type). Based on this position and the
positions of ships detected automatically on SAR satellite
images (algorithm described in [14]), we extract the image
of the ship by cropping the SAR image in the area where the
ship is located.

III. CONSIDERED LERANING-BASED METHOLOGY

In this section, we detail our deep learning scheme for ship
classification method and the associated rationale.

A. Vessel classification case-study

We focused on the categories ”Tanker”, ”Cargo”, and ”Oth-
ers”. The ”Others” category encompasses every other type of
vessels. The motivations of this choice relate to the following
facts:

• Neural networks are known to require large amounts of
data in order to be effective. As a result, we selected the
types of vessels that make up the majority of the data.
Table I shows the most represented categories.

• The classification of vessels on medium-resolution radar
images using deep learning techniques is a relatively
new and under-explored field of research. For instance,
the results presented in [6] are difficult to reproduce.
In [15], the training was not done on a large dataset.



Therefore, the choice of a three-class problem offers a
good starting testbed, as well as a perspective for more
complex problems.

Vessel type Tanker Cargo Fishing Passenger Others
# images 22569 36822 6981 3531 24678

TABLE I: Description of Data. The category “Others” includes every
other type of vessel

B. Training and test datasets

The performance and accuracy of deep learning networks
depend heavily on the quality of the data used for training
and testing. The quality of the labeling issued from AIS data
poses a significant challenge for our dataset. To reduce the
impact of this quality shortage, we removed all the products
that have the type of vessel ”Unitised”. These products contain
a large amount of cargo, in addition to other types of vessels.
Additionally, we removed the products that have a vessel
size of zero or greater than 400 meters, as this data is
likely to be falsified. The training is carried out on 80% of
the data, while the test is done on 20% of the data. The
data augmentation methods used includes oversampling and
horizontal and vertical flips. Using other methods such as
Gaussian noise or rotation proved to be disruptive for the
models used. II represents the training and test sets.

Classes Tanker Cargo Others
Number of images 22474 37173 20805

Training set 29739 29739 29739
Test set 4494 7435 4161

TABLE II: Description of training/Test data. The data augmentation
is carried out on the categories “Tanker” and “Others”

C. Data preprocessing and choice of input

Due to nature of the SAR data, especially the range of ob-
served pixel values and the occurence of outliers, we applied a
logarithmic transformation to the data. This technique helps to
minimize the effect of outliers and leads to faster convergence
of the loss function.

Fig. 1: A comparison of the effect of logarithmic transformation on
a vessel image which has a very retro-diffusing point is shown. On
the left is the original image, and on the right is the image with the
logarithmic transformation applied

In terms of the input for our model, we chose to use a
two-band image, which includes backscatter intensity and in-
cidence angle. This selection was made because the incidence
angle has a significant impact on the backscatter intensity and

then on the contrast between vessel and sea surface. As a
result, we did not use any pre-trained network, as we believed
that they would not be able to handle these features relevantly.

D. Neural network architectures

To address the classification problem, we developed en-
semble convolutional neural networks (CNNs). The overall
architectures of the CNNs used in this work are illustrated in
Table III. We used the most well-known concepts in the state-
of-the-art in our models. In Model A, we used a Convolutional
Block Attention Module [16], in Model D, we used residual
layers [17], and in Model E, we used the inception module
[18]. One can see that all models resemble more or less
Model A. In fact, Model A is our main model. After many
experiments, we believe that this is the best model compared
to our data and problem.
We used the same parameters in all models. We exploited
a categorical cross-entropy loss as a training loss function.
We applied an end-to-end training using Adam Optimizer. We
used batches of size 64 and a learning rate of 1e-4. This
parametrization has shown good results for our classification
task.
In our final model, we combined the output of the ensemble
of CNN models using an ”Averaging” merging. This configu-
ration proved to be the best not only in terms of precision but
also in terms of model calibration. It is worth mentioning that
Model A is perfectly calibrated, while our final model is well
calibrated, especially for large confidence values (> 0.8).

IV. RESULTS

The experiments were conducted to evaluate the perfor-
mance models A, B, C, D, and E, on the classification task.
Table IV presents the total accuracy scores for each model,
as well as our final model that was constructed by taking the
average of the outputs from all five models. The results of the
overall test dataset indicate that the total accuracy of our final
model was 79%.
In this study, our objective is to attain an optimal balance
between recall and precision for all classes, as there is no
preference for classifying one class over another. However,
some parts of our data pose a challenge in clearly distin-
guishing between cargo and tanker ships, causing a minor bias
towards either the cargo or tanker class. To address this, we
have chosen to lean slightly towards the cargo class as it is
the most commonly encountered class in practical applications.
The table V presents the confusion matrix and detailed metrics
for each class.

V. CONCLUSION

This paper has studied the classification of vessels on
medium resolution SAR images. To the best of our knowledge,
this is the first time a Deep learning network has been trained
to make this task on a relatively large dataset, and which
provides a relatively good results.
A pratical use case for our network is the identification of
discrepancies between a vessel’s declared information and the
network’s predictions when those predictions are superior to
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Block Model A Model B Model C Model D Model E
1 128 - Conv 256 - Conv 128 - Conv Concatenate(32 - Conv(k-

s :1), 32 - Conv(k-s :2), 64
- Conv(k-s :3))

Concatenate(32 - Conv(k-
s :1), 32 - Conv(k-s :2), 32
- Conv(k-s :3))

2 CBAM CBAM CBAM 256 - Conv 128 - Conv
3 256 - Conv 512 - Conv 256 - Conv 256 - Conv 128 - Conv
4 Average pooling Average pooling Average pooling Dropout 128 - Conv
5 Dropout Dropout Dropout . Concatenate(Block 1 and

4)
6 . . 256 - Conv . 256 - Conv
7 . . 512 - Conv . Average pooling
8 512 - Conv / Dropout / 128 - Conv / 256 - Conv / Average pooling / Dropout / 256 - Conv / 512 - Conv / 256 - FC / 3 - FC (Softmax)

TABLE III: Structures of the models. In this table, ”Conv” denotes a convolutional layer, ”CBAM” denotes a convolutional block
attention module using the same parameters cited in reference [16], ”FC” denotes a fully-connected layer, ”k-s” denotes kernel size, and
”Concatenate” denotes a concatenation operation. Unless otherwise stated, we use in the convolution operations a kernel size of size 3,
strides = 1, and padding = ”same”, we use in the pooling operations a pool size = 2, stride =1, and padding =”valid”. We use a dropout
rate of 0.3. All convolution and FC layers are followed by a RELU activation. Note that Block 8 is the same for all models

Models A B C D E Averaging

Total Accuracy 77.8% 77% 76% 77.4% 77.5% 79%

TABLE IV: Total Accuracy of Models A, B, C, D, E

TABLE V: Confusion matrix and evaluation metrics

0.9, which can trigger an alert for potentially-false AIS data.
A large attention is placed in the field of maritime safety on
dark vessels not reporting their location through AIS, while
we believe that other alterations of AIS data are possible and
under considered, including eroneous declaration of vessel’s
type (we could call them bright vessels).
This paper paves the way for future work to automatic vessel
classification on medium-resolution SAR imagery without the
need for AIS data. To our knowledge, the SAR imagery
is more difficult to alter than the AIS information. This
breakthrough could be achieved through the collection of more
data and the development of deep learning methods.
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1. Abstract  

 
Remote sensing derived information is increasingly supporting the maritime situational awareness, addressing the effective 
understanding of global maritime domain, including environment, economy, safety and security. However, limitations to the 
current detection possibilities due to false alarms over the EO derived information, as well as to the extraction of target 
dynamics, still affect the operational suitability of EO based information services. 
As part of the ESA funded project "Maritime Awareness Pre-Operational Demonstrations", the research activity described in 
this paper aimed at developing and testing ISAR techniques for SAR data processing, enabling refocusing of maritime targets 
to remove blurring effects caused by uncompensated target movements, and retrieval of the corresponding relevant motion 
parameters. Validation activities were performed, with specific focus on quantitative metrics assessing refocusing 
capabilities, by applying the developed processing chain on Stripmap and Spotlight COSMO SkyMed and Cosmo Second 
Generation images. The accuracy of the vessel speed estimation was also assessed by using AIS datasets as ground truth. 
 
 

2. Introduction  
 
By coherently processing echoes originating from the observed scene at varying aspect angles, synthetic aperture radar (SAR) 
and inverse SAR (ISAR) systems achieve the high cross-range resolution needed to get electromagnetic images. Standard 
SAR imaging relies on coherent echo processing assuming the observed scene stationary and the platform's motion in relation 
to the ground usually known. The use of standard focusing on moving targets results in defocusing effects that reduce range 
and azimuth resolutions and causes azimuthal displacements, [R1]. For a linear uniformly accelerated target motion, the 
range velocity component causes a shift in target imaging along the azimuth direction and smearing along the range, whereas 
the range acceleration and azimuth velocity component are responsible for the smearing effect along range, the defocusing 
along the azimuth direction, and for SNR losses. The refocusing process seeks to reduce blurring effects and estimate motion 
parameters. Conversely, the ISAR approach exploits the target own motion to achieve the synthetic aperture needed for radar 
imaging. It is based on the analysis of received echoes as a function of fast time and Doppler frequency, yielding a two-
dimensional image. The time analysis offers the position of bright points along the range, whereas the Doppler analysis 
provides the position across the range. Since the relative motion between the target and the radar is typically unknown, it 
must be estimated directly from the radar signal by means of autofocusing technique. Previous work, [R2], has shown the 
effectiveness of the application of ISAR techniques at refocusing the images of such type of targets. Along this line, several 
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techniques for moving target motion compensation and motion parameter estimation have been tested in this research 
activity, demonstrating that SAR/ISAR configurations are effective for improving moving targets focusing in SAR imagery, 
as well as to derive vessels kinematic parameters, [R3]-[R5]. Noticeably, the effectiveness has be proved by analyzing an 
extended dataset nicely complemented by reference ground truth provided by recorded AIS data. 
 
 

3. Architecture  
 
The proposed service chain is developed to ingest Single Look Complex (SLC) SAR data product, taking advantage of the 
availability of the SLC layer for all satellite SAR missions. It is based on four main steps: 

1) First, an inverse focusing, based on Chirp Scaling (CS) algorithm [R6], of the SLC SAR data is applied using 
metadata parameters, [R3]. This step aims at removing Range Migration Correction (RMC) and azimuth 
compression that were performed in the focusing process by incorrectly assuming scene stability. The result of this 
process is an instance of raw SAR data. 

2) The raw SAR data is then processed through an autofocus algorithm that finds the optimal Doppler centroid and 
Doppler rate that maximize the quality of the SAR clip, [R2]. For this purpose, a global optimizer is used. The 
objective function of the optimization is the metric quantifying the quality of the focused SAR clip. Used metrics 
are: entropy, image contrast, spectral power density. Focusing is performed by using the efficient CS algorithm that 
can resolve migration correction without demanding interpolation computations. Finally, the velocity of the vessel, 
both the azimuth component for stripmap and spotlight 2 SAR data, and the range component for stripmap SAR 
data, are estimated from the optimal Doppler rate and centroid, respectively [R3]. 

3) The residual Doppler phase is then estimated through PGA, [R7], and removed. This step removes defocusing terms 
higher than second order (the parabolic component due to linear velocity has been removed from the autofocus) and 
stabilizes a point (fulcrum point), chosen as the one with the largest amplitude, which will be used in the next step. 

4) The last step, the Cross-Range Scaling (CRS), aims to estimate the effective rotational velocity of the vessel, if any, 
for cross-range scaling and, if needed, to remove defocusing effects. As known, depending on SNR, target size and 
specific target motion, the performance achievable can be very poor, hence two different approaches have been 
tested and compared on specific representative case studies. The first approach exploits the quadratic component of 
the phase induced by the rotation motion, [R4], while the second exploits the slope of linear features in the target 
image to estimate the scale factor related to the rotation motion, [R5]. 
 

 
Figure 1 : ISAR Processing Chain 

 
4. Validation and Results 

 
The processing chain was tested over 3 areas of interest, exploiting a set of 24 SLC COSMO-SkyMed and COSMO-SkyMed 
Second Generation imagery, and AIS datasets provided by SPIRE. The performance assessment addressed two main aspects 
of the ISAR processing results: 

1) The enhancement of the amplitude SAR image contrast. 
The measurements of the contrasts have been calculated for all analyzed targets at different steps of the ISAR processing: 
o Contrast of the original SAR image clip 
o Contrast after the chirp-scaling refocusing 
o Contrast after cross-range scaling 
Based on these contrast estimations three key performance indicators have been retrieved: 
o % mean contrast improvement due to refocusing step 
o % mean contrast improvement due to cross-range scaling (CRS) step 
o % mean contrast improvement due to the overall ISAR processing 



 

 

The average improvement in image contrast, evaluated over 300 vessels, is about 18%. Most of the vessels showed 
defocusing effects due to linear motions and the refocusing is performed mainly by the autofocusing step. However, there are 
also different cases in which the rotation motion is relevant and produces strong defocusing effects that have been removed 
mostly by the last step based on CRS. 

2) The estimation of the movement parameters. 
The assessment of the retrieved movement parameters is based on a comparison with a reference set of motion parameters 
provided by the collected AIS data. In this analysis, only linear velocity parameters can be assessed, because the effective 
rotation velocities are not available in AIS data. Therefore, after a correlation process to link vessels in the SAR data to the 
corresponding AIS tracks, the AIS velocities of the vessels have been projected along the SAR azimuth and slant range 
direction. The quality of the correlation results, and therefore the effective reliability of the AIS velocities, depends on the 
linear distance (m) between the geographical position of the vessel in the SAR data and that reported in the correlated AIS 
tracks. The azimuth displacement in the SAR data of the vessel due to its range velocity has been calculated and compensated 
in the distance calculation. However, this distance is affected by different errors:  inaccuracy of the SAR geometric 
information encoded in the state vectors, inaccuracy in the identification of the center of the vessel in the SAR data, unknown 
position of the AIS transmitter within the vessel and AIS positions inaccuracies. Higher is the distance between a vessel and 
its corresponding AIS track, less reliable is the AIS information content. For this reason, the assessment of the retrieved 
movement parameters has been performed considering only correlated target with distance smaller than 200 meters. Based on 
a comparison between velocity values (along azimuth and slant-range directions) of the vessels extracted by the AIS and 
those estimated by ISAR processing chain, two key performance indicators have been retrieved: 
o Azimuth velocity root mean square (RMS) 
o Range velocity root mean square (RMS) 
 
The resulting velocity RMSEs are 1.90 [m/s] for the azimuth component, calculated on 220 vessels (in stripmap and spot-
light-2 images), and 0.90 [m/s] for the range component, calculated on 24 vessels (in stripmap images). As an example figure 
2 shows a comparison between the ship image as available in the CSK acquisition and the same image after refocusing: a 
clear improvement in the quality of the image is observed and, as a consequence, it is quite easy to identify in the radar image 
the main parts and the main characteristics of the considered target that are not recognizable in the original image.  
 
 

 
Figure 2: example of achievable results 

 
5. Conclusions  

 
The activity aimed at identifying shortcomings and advantages of inverse SAR algorithms in view of improving 
characterization of moving vessels by removing/mitigating defocusing effects due to linear and rotation motions of the target, 



 

 

estimation of such motion parameters, and cross-range scaling of the target images. This activity demonstrated the impact of 
the ISAR processing in improving the characterization of moving targets in SAR imagery. 
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Developing Refugee Vessel Detection Capabilities with Polarimetric SAR 
 
Existing research in (semi-)automatic marine target detection using Synthetic Aperture Radar 
(SAR) data mainly concentrates on the detection and classification of large, metallic targets - 
mainly ships. This project focuses on the detection of small, non-metallic targets, i.e. inflatable 
rubber vessels. Such vessels are used by migrants attempting to cross from Africa to Europe. 
The physical attributes of such kind of targets, namely its small size and height and the absence 
of materials of high dielectric constant such as metals, decrease the detection capabilities of 
commonly known vessel detection systems. We tried to apply and test a range of detectors of 
different methodology to gain a better understanding of the target’s backscattering properties 
and to identify the best approach to develop new, specially tailored detection algorithms. The 
science developed in this work builds on the shoulder of previous research (Lanz et al. 2020, 
Lanz et al. 2021) we have carried out on inflatable vessel detection.  
 
We use multi-platform SAR data (mainly TerraSAR-X, 
accompanied by quad-pol Cosmo SkyMed (CSG) and 
ICEYE) holding “sea truth” to a 12m long rubber 
inflatable vessel identical in construction and material to 
those which are often used by human traffickers to send 
migrants to cross the central Mediterranean Sea. Data 
acquisition was done in a small lake near Berlin, 
Germany, which functioned as a test bed. The 
experiment setting is such to emulate the backscattering 
of 80 passengers on board and using two different 
orientations. We combined the two collections to create a 
testing environment as close as possible to the real situation. 
In experiments with a ground SAR system we identified wet 
clay pebbles, packed in 30x40cm air-tight plastic bags, as the 
best choice to simulate humans in SAR and filled the inflatable 
with them (Fig.1). 
 
The collection comprises single, dual and quad-polarimetric 
data and covers a variety of different sensor and scene 
parameters. For detector testing we used different 
combinations of dual-pol TerraSAR-X data. With the 
high-resolution single-pol imagery from ICEYE we 
explored the location and the spatial distribution of the 
scattering intensity inside the vessel and in its close 
vicinity (Fig.2). The quad-pol CSG enabled us to apply a 
variety of coherent and incoherent polarimetric 
decompositions (Pauli, Cloude-Pottier, Yamaguchi and 
Cameron) to get insight about the different scattering 
mechanisms occurring on the inflatable. Fig.3 shows the 
entropy, which is high over the lake (red) and lower for 
the vessel (blue). 
 
Different combinations of incidence angles (low, medium, high), polarimetric dual-pol channel-
pairs (HH VV, HV HH, VH VV, vessel orientation relative to the LoS (45°, 90°) support the effort 
of identifying the main scattering mechanism and its detectability.  
 

Figure 1: The data acquisition campaign setup. 

Figure 2: VV-pol ICEYE with the target in 
the center (©ESA 2022). 

30m

m 

Figure 3: Entropy (©ASI 2022). 



To facilitate the testing of vessel detector algorithms in a more realistic situation of different sea 
states, for the case of TSX, we put together a collection of dual-pol TSX data of wave heights 
between 0.5m and 6.5m, grouped by wind direction (up/down wind, cross wind), polarization 
(HH VV, HV HH, VH VV) and three categories of incidence angle (low, medium, high).  We 
fused the inflatable backscattering with the datasets showing the open ocean. Respecting all 
important sensor parameters (resolution/acquisition mode, incidence angle and polarization), we 
placed pixels with the boat in a background made of pixels from the ocean. 
 
We applied, apart from the intensity-based CA-CFAR detector, six Polarimetry-based and one 
sub-look-based detector following a qualitative evaluation of their detection capabilities 
regarding the special target. Amongst the polarimetry detectors are the Depolarization Ratio 
Anomaly Detector (iDPolRAD) (Marino et al. 2016), the Geometrical Perturbation-Polarimetric 
Notch Filter (GP-PNF) (Marino, 2013), the Polarimetric Match Filter (PMF) (Swartz et al. 1988, 
Novak et al. 1989), the polarimetric symmetry (PolSym), the polarimetric entropy (PolEntr) 
detector and the Polarimetric Whitening Filter (PWF) (Novak et al. 1989). The sublook-based 
detectors include the sublook correlation method (Marino et. al. 2015).  
 
The novelty of this work lies in the innovative way we emulated the images of ocean with a fully 
boarded inflatable vessel. Second, the surface scattering detecting variant of the iDPolRAD, 
called ‘SiDPolRAD’(Lanz et al. 2021), and the iDPolRAD were tested with co-pol (HH VV) data, 
adding dihedral scattering and Bragg scattering to the range of detectable scattering 
mechanisms of these detectors. Since the polarimetric decompositions resulted in a good 
contrast between the vessel and the lake surface when looking at volume scattering, we 
introduce a double bounce detection algorithm that uses the T22 element of the coherency 
matrix [T]. Further, we tested and benchmarked the combination of detectors to enhance the 
detection capabilities for the inflatable at higher sea states. We also worked on fusion of 
detectors, where we used both ‘or’ and ‘and’ operators for the combined detection masks. 
 
The detector comparison showed very good results for the PWF, the PMF, the PolSym detector 
and the PNF. For dual cross-pol data, we tested different combinations of the polarimetric 
symmetry, the volume and surface detectors, CACFAR and the PWF. The best results could be 
obtained with the fusion of iDPolRAD with the SiDPolRAD, called ‘PolRatioOR’. However, this 
fusion of detectors could not outperform the PolSym and the PWF (Fig.4). 
 

 

For co-pol data, the combination of the PolEntr and the T22 detector delivers the best results, 
the PMF comes second (Fig.5). The testing showed, that the combination using the ‘and’ 
operator worked best and was therefore called ‘HT22AND’. It is capable of generating very good 

Figure 4: Detector comparison results for dual cross-pol data.  
                PolRatioOR (mean AUC: 0.91), PolSym (mean AUC: 0.951), PWF (mean AUC: 0.961). 



results even at high sea states, a quality which we attribute to the PolEntr. 
 

 

In case of low clutter, the main signal is produced by thermal noise. This state of high Entropy 
allows for target identification when there are clearly identifiable volume and/or surface 
scattering mechanisms and lower Entropy at the inflatable. In case of higher surface scattering, 
such as it is the case for higher sea states, the entropy of the water surface decreases and the 
vessel detector searches for higher entropy. The HT22AND reaches 95% positive true with a 
false alarm rate of less than 2% when only looking at medium and high incidence angles and 
wave heights of maximum 2 meters. In both scenarios, the detector searches for volume 
scattering as well and improves the detection result. The PMF and the PWF similarly show very 
good results, both in co-pol and cross-pol data.  
 
The primary motivation of this research is to mitigate the ongoing humanitarian crisis at 
Europe's southern Sea border. The applicability of the project’s results to the setting of the open 
sea, where stronger winds and seas could interfere with radar detection, will be discussed. This 
project builds a foundation to develop satellite based detection systems for inflatable rubber 
boats. Such systems could be integral to search and rescue infrastructure in reducing the 
number of lives lost at sea. 
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The Copernicus polaR Ice and Snow 
Topography ALtimeter (CRISTAL) mission, planned to 
be launched in 2028, will incorporate a dual Ku/Ka 
band interferometric altimeter with specific 
transmission pulse sequences designed to enhance 
the sea ice performances. The open burst mode will 
enable the generation of Fully Focussed products with 
simultaneous estimations of snow depth and 
freeboard thanks to the dual-band range 
measurements. The target accuracy is 3 cm for sea ice 
freeboard, 5 cm for snow depth, and 0.15 m for the 
sea ice thickness at a scale of 25 km, which are not 
achievable with current radar altimeter missions. 

 
Current sea ice freeboard measurements 

from satellite radar altimeters are obtained based on 
the procedure first introduced by RD. 1: waveforms 
along satellite tracks are classified as sea ice floes 
returns or leads by looking at their shape and 
maximum power, both determined mainly by surface 
roughness. The range from each of them is 
determined by tailored retrackers and later translated 
into elevation measurements. The lead heights are 
interpolated to estimate the SSH along the satellite 
track, which is then subtracted from the sea ice 
elevations to estimate freeboard heights. 

  
Since the first altimeters launched in early 

90s, the sea ice measurements have been improved 
from mission to mission by increasing the polar 
coverage, improving the along track resolution thanks 
to the SAR processing and providing interferometric 
capabilities to be able to properly geolocate off-track 
echoes. CRISTAL mission will keep improving the sea 
ice measurement being the first mission to 
incorporate Ku and Ka collocated measurements, 
open burst transmission mode to enable Fully 
Focussed processing and interferometric capabilities 
thanks to the two antennas. From the measurements 
point of view, it can be seen as having CryoSat-2, 
Sentinel-6 and SARAL/AltiKa on a single platform.  
Thanks to CryoSat-2 series of measurements over 13 
years, recent publications (RD. 2, RD. 3, RD. 4) are 
stablishing the baseline methodologies and 
performances to be considered in the CRISTAL mission 
definition.  

 

At this stage of the CRISTAL mission design, 
phase C, the expected performances are being 
evaluated against the requirements to verify the 
effectiveness of the mission configuration and assess 
its compliance. In this framework, an end-to-end 
validation environment has been designed. 

 
Following the verification and validation plan 

defined during this first stage, the System and 
Instrument Simulator (SIS), the Ground Processor 
Prototype (GPP) and the Performance Assessment 
Tool (PAT) are in charge of providing the overall end-
to-end performances of the mission over different 
scenarios (e.g. point targets, sea ice with different 
snow properties, sea ice with leads placed at different 
orientations, ocean tracks with different SWH, and 
wind conditions).  In addition to the simulated data, 
real data from Sentinel-6, CryoSat-2 and SARAL/AltiKa 
can be also combined to assess the benefits from the 
interferometric, dual frequency and open burst Fully 
Focussed acquisitions.  

 
On top of the requirements that should be 

met, CRISTAL mission can provide complementary 
types of measurements that have not been explored 
within the current altimetry missions. The work 
performed within the Sentinel-6 Validation Team [RD. 

6] has demonstrated that it can be possible to make 
accurate distributed measurements (computation of 
areas) from the Fully Focussed radargrams when clear 
targets are located off-track. 
 

 

Figure 1. Sentinel-6 and CryoSat-2 ground tracks with the 

Sentinel-2 NDWI background image. 
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The improvement of this concept with 
CRISTAL mission is clear, we will not only be able to 
measure 2D features, but also to geolocate them 
properly thanks to the interferometric capabilities. 
We have provided an example of the potential 
capabilities of CRISTAL by looking at sea ice (frozen 
lake) area with time and space collocated Sentinel-6 
(ascending pass #95 on the 30th of April and 
descending pass #178 on the 4th of May) and CryoSat-
2 (1st of May pass) radargrams together with a 
Sentinel-2 (14th of May) NDWI image highlighting 
features that can be seen in the scene, Figure 1 .  

 
In Figure 2 and Figure 3, we can see the 

radargrams from the different passes, comparing the 
features observed in the Unfocussed and Fully 
Focussed SAR.  

 
As expected, the improved along track 

resolution from FFSAR (20 m vs 300 m in this example) 
allows us to better monitor smaller leads, being able 
to retrieve its dimensions (length and width) and 
location. Currently within the Sentinel-6 capabilities, 
we are not able to properly geolocate them but to 
derive the across track distance to the nadir without 
the possibility to determine towards which side. It can 
be appreciated from Figure 2 the “range folding” 
effect where signal from the Burntwood island is 
overlapped at the same range as the lead #2.  

 
Comparing Figure 2 and Figure 3, we note 

how the lead #2 is observed from different points of 
view. Figure 2 presents a parallel observation, 
whereas Figure 3 shows the lead crossing the ground 
track. Extending this 2D feature extraction to the open 
sea ice environments, some other parameters such as 
the sea ice concentration or the sea ice roughness can 

be potentially derived based on the analysis of the 
backscattering of the echoes. Similar concepts are 
already being assess over open ocean by measuring 
the swell from the Fully Focussed waveforms tail, RD. 

5. 

 

Figure 2. Sentinel 6-radargrams for pass #178 from Unfocussed 

and Fully focussed processing highlighting the leads that can be 
seen 

 

 

 
 

Figure 3. Sentinel-6 radargrams for pass #95 from 

Unfocussed and Fully focussed processing highlighting 

the features leads that can be seen. 

Figure 4. CryoSat-2 radargram and phase difference information 

highlighting the leads that can be seen. 

 



In the CryoSat-2 pass from Figure 4, we can 
observe now how the phase difference measured 
by the interferometer is able to capture positives 
phase difference values in the lead#2 echoes that 
are on the east side of the trac and negative values 
on the west one. Not only the lead#2 but also 
Burntwood island present reliable phase difference 
values that will enable a proper geolocation of 
these range measurements and also enhanced 2D 
retrievals when using proper focused data.  

 
A similar improvement is also expected 

with regards to the capabilities for measuring and 

detecting icebergs. The methods described in [RD. 
7] will be used to generate iceberg retrievals, but 
the use of Fully Focussed waveforms instead of 
Unfocussed is opening the door to better retrieve 
distributed measurements such as shape of the 
icebergs. This improvement can be explored in 
Sentinel-6 data over icebergs, as shown in Figure 5 
and Figure 6. Fully Focussed waveforms were 
generated every 25 metres, whereas the 
unfocussed SAR waveforms have the nominal 300 
meters resolution.  

 

 

 
 

 

Figure 5. Sentinel-6 08/01/2021 12:26:34 ground track over Sentinel-2 07/01/2021 12:07:14 image (left), normalised waveforms, UF-SAR 

(right top), and FF-SAR (right bottom). 

     
  

Figure 6. Iceberg echoes zoom (left), detection and labelling (right). Each colour represents a different iceberg detected for both UF-

SAR (third) and FF (fourth). 
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Svalbard Integrated Arctic Earth Observing System (SIOS) is an international collaboration of 28 scientific 
institutions from 10 countries to build a collaborative research infrastructure that will enable better 
estimates of future environmental and climate changes in the Arctic. SIOS's mission is to develop an efficient 
observing system in Svalbard, share technology and data using FAIR principles, fill knowledge gaps in Earth 
system science and reduce the environmental footprint of Arctic research. Since 2019, SIOS in collaboration 
with its member institution Norwegian Research Centre (NORCE) installed, tested, and operationalised 
optical imaging sensors in Lufttransport’s Dornier (DO-228) (LN-LYR) passenger aircraft stationed in 
Longyearbyen under the SIOS-InfraNor project, making the acquired imagery compatible with research use 
in Svalbard. Two optical sensors are installed onboard the Dornier aircraft: (1) the PhaseOne IXU-150 RGB 
camera and (2) the HySpex VNIR-1800 hyperspectral sensor. The aircraft is configured to acquire aerial RGB 
imagery and hyperspectral remote sensing data during its regular logistics and transport operation in 
Svalbard. Since 2020, SIOS has supported around 50 flight hours to acquire Dornier aircraft and UAVs images 
used in about 20 scientific projects. However, the usage of airborne optical instrumentation is limited from 
March to October every year due to the polar night, and in addition limited by cloud cover which could be 
abundant in Svalbard, especially in summer.  
 
NORCE has evaluated the potential of complementing the current optical instrumentation with a dual 
frequency Synthetic Aperture Radar (SAR), currently considering L- and X-band. A SAR is a microwave active 
sensor that has all-weather, all-day and all-season detection capability, beneficial for maritime surveillance, 
search & rescue, as well as for several maritime and terrestrial applications for polar research and 
environmental monitoring. Strong user involvement from the scientific community and relevant 
governmental organizations with activity in or around Svalbard is required to effectively define mission 
objectives and user requirements (UR). To get feedback on the interest and potential applications of an 
airborne SAR in Svalbard, NORCE and SIOS organised a user survey that was disseminated to the SIOS 
community and relevant stakeholders at the local, regional and national levels e.g. Norwegian coastal 
administration, Norwegian Coast Guard, Governor of Svalbard, governmental agencies, private companies 
and academic institutions with research or operational activities in and around Svalbard (e.g. Fram Center). 
We formulated fully anonymous survey questions into three categories: (1) general needs e.g. observational 
requirements, (2) L1/L2 product requirements (3) specific needs / high-level product requirements e.g. L4 
products documenting geophysical variables. Between December 17th 2021 and February 7th 2022, 73 
respondents partially and completely answered the survey. The present analysis is focused on the completely 
filled 54 responses.   
 
The results show that survey respondents were mainly from academic institutions, private research institutes 
and governmental agencies (only a few from the industry). The majority of the respondents have a researcher 
position (26 out of 54) but the remaining respondents cover a wide range of positions (professors, engineers, 
advisers, students, managers, navigators, etc.). All the listed professional fields are represented in the survey. 
The main represented field was “radar remote sensing” (32), while “biology” was the least represented field 
(6). Among the other fields, “Optical remote sensing”, “Glaciology”, “Maritime surveillance”, 
“Geology/Geomorphology”, “Geophysics” had the highest scores (10–20 respondents). The survey 
participants use (or aim to use) remote sensing for a wide range of applications: snow 
mapping/characterization (25 people); sea ice mapping/characterization (22); sea ice drift (15); glacier 
motion (17); feature characterization (16). All listed applications are represented by at least 5 respondents. 
The respondents’ work is mostly focusing on and around research bases (Ny-Ålesund/Hornsund), in 
Spitsbergen fjords and in maritime areas around Svalbard (Fram Strait, Arctic Ocean, Barents Sea, Greenland 
Sea, Norwegian Sea). Regarding the question on the appropriate revisit time, a high number of participants 
answered that weekly revisits or targeted missions (flexible revisits) are valuable to their applications. Sub-



daily, daily and monthly-annually are slightly less represented. However, the spread of answers both in terms 
of regional focus area and temporal resolution is significant, which is representative of the wide range of 
research fields covered by the survey participants. Most of the participants have experience with SAR data 
(76%) and a third (33%) has used (or is planning to use) optical data from the SIOS Dornier research aircraft 
(LN-LYR). Most users would use SAR data from Single-Look Complex format or a higher level. Only a few (6) 
are interested in level 0 (raw) data. There is a clear interest in a combination of radar frequencies. A total of 
31 respondents believe that a combination of both X-/L-band is most appropriate, while 18 do not know. 
Only 5 people show a special interest towards one single frequency. The main value of the airborne SAR for 
the users is to complement field/in-situ measurements and calibrate/validate satellite remote sensing. 
Answers regarding technical specifications (real-time processing, polarization, across/along-track 
interferometry, left/right wide area mapping) are less clear, with a high percentage of participants answering 
that they don’t know. It shows there is a need for further discussing the technical properties of the 
measurement methods with the stakeholders and organizing educational activities about SAR remote 
sensing. 
 
The survey’s results show that there is a strong interest in installing a SAR sensor onboard the Dornier aircraft. 
Based on the documented research needs, a SAR sensor would create many opportunities for data 
acquisition during the whole year in Svalbard. An airborne SAR will strengthen science, international 
collaboration, and capacity building in Svalbard through its airborne research infrastructure. Measurements 
are anticipated to complement in-situ and space-borne measurements and reduce the environmental 
footprint of research in Svalbard. An airborne SAR will enable a variety of applications within glaciology, 
hydrology, oceanography, and other fields of Earth system science to understand the state of the 
environment of Svalbard. Mapping glacier crevasses, generating DEMs for glaciological applications, snow 
and ice studies (e.g., sea ice, icebergs, glaciers and snow cover) and ocean surface features are examples of 
applications. The use of the Dornier passenger aircraft warrants the following benefits: (1) regular logistics 
and research activities can be coordinated to reduce flight hours in carrying scientific observations, (2) joint 
project proposals of using flight hours will facilitate international collaboration, (3) measurements conducted 
using both optical and SAR sensors will complement in variety of applications, (4) airborne data can be used 
to train the polar scientists as a part of the annual SIOS training course, and (5) data can also be useful for 
Arctic field safety as it can be used to make products such as high-resolution maps of crevassed areas on 
glaciers and sea-ice properties in Spitsbergen fjords.  



A New Distributed ATI SAR System: GEO-LEO SAR ATI concept 
The ocean (sea) surface velocity (SSV), which has always been an important parameter to 
understand the dynamic situation of the ocean. Spaceborne synthetic aperture Radar (SAR) has the 
capability of wide swath imaging in "area" measurement under various weather conditions at 
various times. The along-track interferometry (ATI) technique is implemented by using two 
receiving channels along the track direction, and the LOS velocity information between two short-
time measurements can be obtained. It is a mainstream method for the estimation of SSV. 
Traditional ATI measurements are mostly based on LEO monostatic systems, which have limited 
revisit and coverage capabilities, and can only obtain one-dimensional LOS velocity vector in a 
single measurement. Obtaining two-dimensional line-of-sight velocity vector has become a new 
development trend. To solve this problem, Steffen and Paco [1] proposed that the dual-beam 
interference mode could be used to obtain radial velocities in both sight directions. This idea was 
verified by the binary star system based on TDX and TSX [2], and the obtained Angle of forward 
and backward LOS velocities was about 4.4°. According to the above ideas, a new ATI measurement 
LOS angle can be provided through the distributed formation, which can provide the basis for 2D 
ocean current inversion. One of the distributed configurations is the GEO-LEO ATI SAR 
configuration, transmitted by GEO SAR and received by LEO SAR. 
In GEO-LEO SAR system, the GEO SAR transmits signals to the target, at the same time, LEO 
SAR just act as passive satellites to receive high orbit satellite signals reflected from the ground and 
perform imaging processing. Zheng Lu and Yuekun Wang proposed a configuration optimization 
method based on Simulated Annealing (SA) algorithm to improve the GEO-LEO imaging 
performance, and studied the cross-orbit interference (XTI) ability of the system[3, 4]. In this paper, 
a configuration design method based on GEO-LEO distributed ATI SAR system is proposed, which 
not only meets the requirements of rough sea surface imaging performance, but also meets the 
requirements of ATI measurement. The results show that using GEO-LEO SAR system for ATI 
measurement can separate the LOS direction from the LEO platform and improve the sustainable 
measurement capability. 

 
Figure 1．GEO-LEO ATI SAR system schematic diagram 

 
The main work of this paper is as follows. 
1. A theoretical phase model for GEO-LEO ATI SAR under large geometric difference is 

established 
As shown in the figure below, we derived the ATI phase expression as (1.1), t  is the time delay 
of the front and rear antennas, the superscript * represents the unit vector. It can be seen that the 
estimated radial velocity of the target is significantly offset due to the existence of the high-orbit 
emission source, and the new equivalent LOS direction is the sum of the LOS unit vectors of the 



GEO and LEO. 
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2. Performance analysis of ATI velocity measurement in GEO-LEO configuration 
a) Baseline analysis 

According to the above derivation, the two imaging delays can be expressed as (1.2): 
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The length of the baseline mainly depends on LEO SAR, a longer baseline can obtain a higher phase 
resolution. However, the selection of ATI baselines should also be constrained by the sea surface 
decorrelation time. 

 
Figure 2. Illustration of the GEO-LEO SAR ATI interference model（left），Sea Surface decorrelation time under 

different sea conditions and radar frequencies（right） 

 

b) Velocity resolution analysis 
Fiedler and Krieger[5] gave the definition formula of the velocity resolution of ATI, which is defined 
as the ratio of the velocity resolution to the interferometric phase resolution. Combined with the ATI 
phase expression in our new regime, the velocity resolution can be expressed as (1.3)： 
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0f is the signal frequency， inc is the incident angle of the equivalent LOS vector. Generally speaking, 
the maximum resolution of the interferometric phase of ATI system is 1°, and the velocity resolution 
of 0.05m/s can meet the requirements of actual ocean current velocity measurement. 

 
3. Simulation is performed for a set of configuration parameters 

Simulation results are as shown in figure 4. By optimization, we can achieve about 6*45 m2 
resolution performance, 89°resolution angle as well. At the same time, we can also get 0.04 (m*s-

1/deg) velocity resolution. 
In the future, we will continue to explore more possibilities for 2-D ocean surface current filed 
inversion with GEO-LEO ATI SAR system, at the same time, focusing on accuracy compensation 
and signal-level & information-level data fusion. In order to improve GEO SAR utilization, we may 
also expand the number of satellites and system complexity at the LEO level. 
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Figure 4. Our simulation is based on: about 36000km altitude GEO SAR with 580m/s velocity, 500km altitude LEO 

SAR with 7500m/s velocity. They all operate at 1.25GHz frequency, about 500MHz bandwidth, and synthetic 

aperture time about 400ms. A set of configuration parameters is obtained by using our optimization algorithm, which 

is based on NSGA-III[6]. GEO look angle is 5.67°, LEO look angle is 27.73°, LEO squint angle is 7.85°, the 

ground projection of the bistatic angle is 8.83°. Figure (a) is using point target to verify imaging performance. 

Figure (b) shows time-varying ocean DEM. Figure (c)~(f) are raw data from SAR imaging as well as multi-looking 

results. Figure (g)~(h) are our simulation ATI phase as well as estimated radial velocities. For the sake of evaluation 

of the estimation results, we analyzed the statistical distribution of radial velocities as shown in figure (i) in the end, 

the mean values of the true value and the estimated value are respectively, 0.00, -0.32 (m/s). The std values are about 

1.01(True)&1.14(estimated), It's worth mentioning that we haven't done much precision compensation yet, the 

accuracy meets 10cm/s, which is expected to meet most requirements of ocean measurements. 
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The Harmony SAR Instrument 
Abstract 
The Harmony mission has been selected by ESA for implementation as Earth Explorer 10. The space 
segment consists of two receive only SAR satellites designed to use Sentinel-1 as illuminator. In this 
way, simultaneous acquisitions of the same scene from multiple viewing angles are obtained and can 
be combined to detect changes or velocities on the surface. The SAR instrument on each Harmony 
satellite receives all polarisations of the bi-static radar echo with an antenna divided in three sub-
apertures and transfers the digitized signals to the mass memory for subsequent transmission to the 
ground. 

This paper describes the SAR instruments and the expected instrument performance at the end of 
phase A as defined during the two parallel study contracts lead by Airbus Space and Defense (ADS) 
and Thales Alenia Space (TAS) which are referred to in the following as concept A and concept B 
respectively. 

Observation Principles 
The Harmony SAR instrument is receive only and designed to use S1 as illuminator. The pulses 
transmitted by Sentinel-1 are scattered by the target area and the echo signal is received by 
Sentinel-1 as well by the two Harmony satellites. 

Due to the along track orbit distance between Sentinel-1 and the Harmony satellites a large bi-static 
angle is formed between transmitter and receiver. This results in an effective diversity in the line of 
sight or slant range direction and the scene is observed from three different directions in the Stereo 
configuration. This unique diversity in slant range direction is used to measure surface geo-physical 
parameters in all two dimensions instead of the single dimension than is accessible through a normal 
SAR observation. 

 

Figure 1: Observation geometry of Stereo (left) and XTI (right) configuration 

The Harmony SAR instrument is compatible with, and optimised for, both the Stereo and Across-
Track Interferometry (XTI) configurations of the Harmony formation, which are illustrated in Figure 
1. It is planned to change several times between two configurations during the planned mission 
duration. With its forward, backward and side looking geometry, the Stereo configuration is 
optimized for detecting velocity vectors on the surface. This allows for the measurement of very 
slow velocities (mm/year) for solid Earth applications using repeat pass and permanent scatterers 
interferometry and the measurement of fast velocities (m/s) for ocean currents either with Along-
Track Interferometry (ATI) or Doppler Centroid Anomaly (DCA) methods. The ATI is performed with 
short baselines formed between two wing antenna apertures on the same satellite. In addition, the 
viewing geometry allows the instrument to be used as a high-resolution scatterometer, for the 



retrieval of surface wind from the radar backscatter images. The XTI configuration is optimised to 
detect vertical movements of the surface. The Single Pass Interferometry (SPI) observation 
technique requires a sufficiently large perpendicular baseline between the two Harmony satellites. 
In order to support these different modes of operation, the SAR antenna, shown in Figure 2 has 
three sub-apertures. A central part (which in the case of concept B is in itself broken up in two parts) 
and two wing antennas that are deployed on either side of the spacecraft. For the ATI mode, the ATI 
baseline is formed between the two wing antenna apertures while for the other measurement 
modes the signals from the full antenna are combined. 

 

Figure 2: SAR antenna configuration of Concept A (top) and Concept B (bottom) 

Instrument requirements 
In order to receive the bi-static echo from S-1, the Harmony SAR instrument has to be capable of 
replicating all the S-1 SAR imaging modes including Stripmap, Interferometric Wide Swath, Extra 
Wide Swath and Wave Mode. 

The Harmony SAR antenna needs to provide electronic beam steering in the cross-track direction 
over a wide angular range, in order to be fully compatible with the S-1 swath geometry. The TOPS 
steering within the bursts of the IW and EW modes requires steering in the along-track direction as 
well, however here the steering range is below +/- 1 degree. The Harmony antenna steering needs 
to take the squinted geometry of the bi-static observation into account as well. 

For most areas, S-1 transmits in vertical polarisation with the exception of polar environment and 
sea-ice zones where horizontal polarization is preferred. Due to the bi-static geometry and the 
attitude of the Harmony satellite, the polarization vector with the strongest scattered signal is not 
aligned with the polarisation axis of the Harmony antenna. Therefore, Harmony always receives both 
polarisations, which allows to analyse the Harmony data in any desired polarisation reference frame. 
An overview on the required Harmony level-1 performance is provided in Table 1. 

 

Table 1: Harmony Level-1 imaging performance requirements for the Single Look Complex image product 



Instrument Architecture 
The Harmony SAR instrument is composed of two major functional subsystems: the SAR Antenna 
Subsystem (SAS) which is split in three sub-apertures and the multi-receive-channel SAR Electronic 
Subsystem (SES). 

The SAS is a deployable planar antenna of approximately 12-13 m length as shown in Figure 1. 
During launch, the antenna wings are folded and stowed on the side of the spacecraft body. Due to 
the instrument mass limitations the front surface of the antenna structure is not fully populated with 
antenna radiators but the SAS is split in three sub-apertures. The size and position of these three 
antenna sub-apertures has been carefully optimised to meet the required instrument performance 
with a minimum aperture. It is worth noting that concept B splits the central antenna in two parts 
places them on the antenna structure next to the satellite body, while concept A covers the top side 
of the satellite body with the central antenna. The along-track baseline for ATI measurements is 
governed by the distance between the two wing antenna phase centres. 

The SAR antenna is built-up from eight antenna tiles, three for each wing aperture and two for the 
centre aperture. A tile comprises of a dual polarised radiating surface, a number of receive modules, 
and a beam forming and calibration network. The tiles of both consortia have very similar antenna 
surface and dimensions. Other important sub-systems of the SAS are the SAS level beamforming and 
calibration network, digital and power harness and the thermal subsystem. One key element for the 
instrument performance is the antenna radiator. Due to the mass constraints both consortia decided 
for the use of microstrip patch technology. The radiator for each panel is built-up out of 16 rows 
with 20 dual-polarised patch radiators. The signal from each sub-array is amplified and controlled in 
amplitude and phase in one of 64 dual channel receive modules (RMU).  

The RF distribution network first combines the output signals from the RMUs per polarization on tile 
level. Then the signals from all tiles that are belonging to one sub-aperture are combined and 
transmitted through coaxial cables with high phase stability to the SES. 

The SES provides all radar instrument control and antenna control, internal calibration signal 
generation, multi-channel radar echo signal reception, conditioning, digitisation, digital down 
conversion, data compression, formatting and transmission of the source packets to the platform 
mass memory. In concept A, the digitisation of all six receive signals, their digital processing as well 
as the generation of the internal calibration signal and the instrument and antenna control function 
is performed on a single electronic board called the Universal Processing Module (UPM). In concept 
B, these functions are distributed six electronic boards, which are specialised for the different 
functions. 

Harmony SAR Image Performance 
The SAR image performance SLC level is the basis for all the different higher-level products of the 
Harmony mission. For some of the products the signals of all three phase centres are combined.  

Figure 3 shows the NESZ and the Total Ambiguity to Signal Ratio (TASR)) expected performances 
when operating in IW mode for consortium A. The TASR performance is driven almost entirely by the 
azimuth ambiguities. The different lines show the expected performance at the edges and the centre 
of the TOPS bursts. The analysis shows that the Level-1 imaging performance as given in Table 1 is 
meet. 

Figure 4 shows the expected NESZ performance for a single wing antenna of both consortia and the 
Sentinel-1 SAR instrument. The analysed performance is compared with the results of the Harmony 



End to End simulator (HEEPS), which includes dynamic scene generation, raw data generation and 
actual Level-1 processing.  

Figure 5 shows the expected precision of the Geophysically equivalent surface velocities (USV) in 
along track direction when averaged over 2km for the reference mid wind condition. 

 

 

  
Figure 3: NESZ and the Total Ambiguity to Signal Ratio (TASR)) performances when operating in IW mode for consortium A 

 

 

Figure 4: NESZ for a single wing antenna for both consortia and the S-1 performance in comparison with the results of the 
Harmony End to End simulator 

 

Figure 5: Along-track USV precision for fine resolution (2km) in IW mode (concept A)  
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Increased activity in the Arctic imposes a growing 
need for improved maritime situational awareness. 

Safe and sustainable maritime operations in the 
Arctic require near-real-time information about sea 
ice, growlers, bergy bits, and icebergs, that pose a 
significant risk for maritime activities in this region. 
Year-round awareness can only be obtained by 
innovative combinations of remotely sensed 
synthetic aperture radar (SAR) imagery from air- 
and spaceborne platforms. 
 
SAR systems provide all weather, all year, 
observational capacity. Spaceborne C-band SAR 
sensors have proven to be a key asset for maritime 
surveillance applications. However, the spatial and temporal coverage of current and planned 
spaceborne SAR observations is not sufficient for fully operational use in the Arctic, and the 
sensor capabilities and methodologies are not fully mature yet. Thus, there is a need to 
supplement spaceborne with airborne SAR observations that can fill in observational gaps, 
provide important Calibration and Validation (Cal/Val) data for satellite missions, and aid 
development of new products and methodologies.  

Norway has an important responsibility regarding search and rescue in the Arctic (Figure 1). 
Airborne SAR provides all weather capability with unprecedented potential to improve 
observations of vessels, oil spills, icebergs, sea ice conditions, and floating debris, leading to 
improved safety and emergency response in the Arctic.  

The Norwegian company Lufttransport AS currently operates two Dornier DO-228 aircraft, 
based in Longyearbyen, Svalbard. The aircraft operate mostly between Longyearbyen and Ny- 
Ålesund but have also frequent flights to North Greenland and mainland Norway. One of the 
aircraft (LN-LYR) has been equipped with a scientific pod containing a state-of-the-art 
hyperspectral imager (Figure 2).  

In the fall of 2022, NORCE completed the first phase by defining mission requirements (MR) 
for a SAR system, to be installed on LN-LYR. The study was funded by Norwegian Space Agency 
and ESA. 

Figure 1. Search and Rescue responsibility area 
for Norway in the Arctic (Joint Rescue 
Coordination Centre - JRCC, 2019). 



The primary objectives of the airborne SAR mission are related to the major scientific 
observational gaps in the Arctic, to current and future needs for operational Cal/Val services 
specifically related to cryosphere applications, and to improve Norway’s capabilities for 
increased situational awareness in the Arctic, as summarised below: 
 

1. To provide high resolution imagery for the monitoring of sea ice, snow, glaciers, ice 
caps and permafrost in relation with the Global Climate Observing System (GCOS) 
Essential Climate Variables, and addressing the current knowledge gaps (e.g. Snow 
Water Equivalent (SWE) retrieval, ground ice content);  

2. To improve safety by extending the monitoring of geohazards related to ground 
movement such as landslides and subsidence, and changes of snow properties related 
to e.g. snow avalanches, providing complimentary service to current Copernicus 
satellites;  

3. To provide an all-weather sensor for Search and Rescue and maritime surveillance 
including localization of vessels and oil spills, categorization of sea ice types and 
detection of icebergs critical to safe navigation in Arctic areas, in compliance with the 
European Arctic policy;  

4. To provide an airborne platform that can collect essential Cal/Val data for satellite 
SAR missions, such as ROSE-L and NISAR.  

Based on a user survey, which was carried out in cooperation with SIOS, the following 
fundamental system and observational requirements have been defined: 

• FMCW radar. 
• L-band SAR. 
• Higher-frequency SAR (e.g. X-band). 
• Single-pass across– and along track capability (X-band). 
• Repeat-pass capability (L-band). 
• Polarimetric observations (one frequency). 
• Simultaneous operation on both bands. 
• Support SAR acquisitions during regular aircraft operations. 
• SAR acquisitions simultaneous with hyperspectral. 

 
First order antenna simulations have been completed and different antenna mounting 
positions on the aircraft are being considered. For X-band, there is a need to establish both 
an across-track and an along-track baseline, requiring careful antenna placement. 
 
Based on the mission requirements, we are now preparing for the next phase which involves 
mission definition and system design. As part of this phase, we are planning an experiment 
SVALSAR2023, where we aim to collect multifrequency (Ku and L-band) SAR and 
hyperspectral data over different targets over both land, glacier, open water including vessels, 
icebergs, sea ice, and natural oil seepages. The experiment will be coordinated with 
simultaneous overflights by available satellite SAR sensors (e.g. ALOS-2 L-band, Sentinel-1 C-
band).  
 



 
Figure 2. Left: Ship detection in ice-infested waters based on Dual-Polarization SAR (Brekke & Anfinsen, 2011). Middle: 
Lufttransport’s Dornier DO-228 aircraft (LN-LYR). Right: Sea ice identification and categorization based on SAR satellite 
images (Johansson et al., 2017). 

In this work, we present the current system design of an airborne SAR to be installed on LN-
LYR. The aircraft is available nearly 365 days per year, and a combination of a fully 
polarimetric, dual frequency, interferometrically capable SAR, plus a state-of-the art 
hyperspectral imager provides a unique asset for regular observations in the Arctic, and an 
available platform for validating geophysical parameters such as e.g. sea ice drift, estimated 
using other methods.  
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The Arctic Ocean is changing dramatically responding to significant global atmospheric warming by pan-Arctic sea-ice retreat 
and thinning. Measurements of geophysical and societal change provide the evidence to underpin the establishment, 
implementation and monitoring of policy, policy decisions and their impact, not just in Europe, but across the world. Since 
changes in the Polar regions have profound impacts globally. Measurement evidence is required to support development 
implementation and monitoring the impact of the European Integrated Policy for the Arctic via the Copernicus Ocean, Land, 
Climate, and other Copernicus Service and down-stream application domains. The current fleet of Copernicus Sentinel satllites 
is being explanded by six Copernicus Expansion Missions that are being implemented by the European Space Agency and the 
European Commission. These missions include the Copernicus Imaging Microwave Radiometer (CIMR), the Radar Observation 
System for Europe in L-band (ROSE-L) and the Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL). This 
presentation will review the current status of relevant future missions highlighting synergies and opportunities to develop a better 
insigt of ocean and ice processes. 
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SeaSTAR is a satellite mission candidate for ESA Earth Explorer 11 that proposes to measure small-scale ocean dynamics 
below 10 km at ocean/atmosphere/land/ice interfaces of the Earth System. SeaSTAR products consist of high-resolution 
images of total surface current vectors and wind vectors of unprecedented resolution (1 km) and accuracy over a wide swath.  
 
A key objective of SeaSTAR is to characterize, for the first time, the magnitude, spatial structure, regional distribution and 
temporal variability of upper ocean dynamics on daily, seasonal and multi-annual time scales, with particular focus on coastal 
seas, shelf seas and Marginal Ice Zone boundaries. The mission addresses an urgent need for new measurements of small-
scale ocean processes to help understand and model their impacts on air-sea interactions, horizontal water pathways, vertical 
mixing and marine productivity. High-resolution imaging of total currents with collocated wind and waves data would bring 
new means of validating and developing models to improve operational forecasts and climate projections.  
 
The SEASTAR SAR instrument is an along-track interferometer (ATI) that can measure the phase difference between two 
SAR images of the same scene taken within a short time-lag. The system is currently assumed to function in Ku-band. 
SEASTAR has two pairs of antennas looking 45° forward and 45° backward to provide squinted ATI measurements, 
accompanied by a broadside beam, to provide measurements for a total of three different azimuth directions. 
 
The Wavemill airborne demonstrator [2] validated the main principles of squinted ATI during an airborne campaign over the 
Irish Sea in 2011. The Wavemill system operated in X-band with two squinted antennas, but without a broadside beam. 
Comparisons against HF radar of the Wavemill retrieved TSCV were typically better than 0.1 m/s. Due to the absence of 
Normalised Radar Cross Section (NRCS) calibration, it was not possible to retrieved Ocean Surface Vector Wind (OSVW) 
from the airborne data, and wind information (needed to correct for the strong Wind-wave Artefact surface Velocity [3]) was 
taken from ground truth instrumentation (weather station). Despite the very successful campaign and promising results with 
the Wavemill airborne system, no further opportunities for airborne campaigns arose and the aircraft used to fly the Wavemill 
airborne demonstrator was decommissioned. 
 
OSCAR is a Ku-band (13.5 GHz) SAR system with Doppler and scatterometry capabilities in three azimuth look directions 
as an evolution from the wavemill instrument. OSCAR was flown over the Iroise Sea (West of Brittany, France) in May 2022 
during the SEASTARex campaign. The OSCAR operations and products are representative of the spaceborne concept, with 
geophysical parameters and accuracies that directly relate to those of the SeaSTAR satellite mission. 
 



 

 

  
Figure 1 Observing principle: Squinted Along-track Interferometry. Figure 2 SEASTAR samples over all coastal/shelf seas and MIZs 

 

 
 
The paper will outline the key elements of the mission and the latest status of the mission concept evolution, with the 
technical solutions and trade-offs that are being considered. 
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1 Introduction

After a successful User Consultation meeting in July 2022, the Harmony mission [1, 2] was confirmed as the European Space
Agency’s 10th Earth Explorer in September 2022. The Harmony mission will consists of two indentical spacecraft orbiting in
formation with a Copernicus Sentinel-1 radar satellite. The Harmony satellites will carry two payloads: receive-only Synthetic
Aperture Radar (SAR) and a multi-view Thermal Infrared (TIR) instrument. During at least 60% of it lifetime, Harmony
will operate in a stereo formation [3] with one satellite flying 350 km ahead of Sentinel-1 and the other trailing it by the same
distance. This formation is intended to maximize the geometric diversity needed to retrieve motion vectors. During the rest of
the mission, in particular at the beginning and towards the end, one of the Harmony satellites will move to a close-formation
with respect to its sibling to form a single-pass SAR interferometer. This configuration will provide dense and high resolution
time-series of digital-elevation models of, for example, fast-evolving glaciers and volcanoes worldwide. Figure˜ 1 illustrates this
two configurations as well as the associated obervation capabilities.

Being tightly linked to the Sentinel-1, Harmony is conceived as a multi-objective, multi-domain, mission. Over solid-earth, the
main focus will be on the quantification of seismic-strain, in particular by providing precise estimates of North-South deformation
components, which are largely missing in current observations. Over mountain and polar glaciers and other ice masses, the main
objective of Harmony is to provide simultaneous observations of glacier motions and volume changes, which will be used to
understand the underlying processes.

This paper discusses Harmony’s science goals and observation capabilities over the oceans. Harmony will deliver data to
improve our understanding of the upper ocean processes and of interactions between the lower atmosphere and the ocean
surface. This will be achieved by providing, for the first time, large scale simultaneous measurements of wind, waves, surface
currents, sea surface temperature differences and cloud motion vectors. The combination of these measurements will allow
better understanding and interpretation of upper ocean small-scale processes and will yield an unprecedented view of the marine
atmospheric boundary layer.

Figure 1: Cartoon illustrating Harmony’s flight configuration and observation capabilities during the stereo (left) and XTI (right)
phases.
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Figure 2: Left: illustration of many of the O(km) scale processes in the Marine Atmospheric Boundary Layer and the oceanic
Mixed Layer that contribute to vertical exchange of momentum, heat and gasses: Cartoon of a Tropical Cyclone, including its
cold-wake.

2 Science goals

Numerical climate, Numerical Weather Prediction and Large Eddy Simulation models are all limited by the how well unresolved
processes are represented and parameterized. A widely adopted strategy to address this source of uncertainty is to increase the
resolution of the models, hereby creating a need for high resolution observations to validate and tune them. Another aspect
that needs improvement is the representation of the coupling between different components, for example to correctly represent
how the upper-ocean and the lower atmosphere interact. In that context, the overarching goal of Harmony is to provide the
high-resolution observations urgently needed to drive the development of the next generation of high-resolution coupled models.

Specifically, Harmony aim at [4]:

• Quantifying and disentangling sub-mesoscale effects, i.e., the air-sea interactions and adjustment between ocean features
(e.g., fronts and eddies) and the MABL and associated tropospheric clouds under different environmental conditions
(Western boundary current systems, Eastern boundary upwelling systems, coastal and/or marginal ice zones), to consolidate
empirical parameterisations, targeting momentum and heat exchanges, water cycle and CO2 fluxes, leading to precise data-
driven representations of these processes in new generation Earth System Models.

• Improving the prediction of the evolution of tropical and intense extratropical cyclones (notably, rapid intensification
events), as well as evaluating the feedbacks between these extreme weather events and the upper ocean state.

• Resolving the high-latitude small mesoscale ocean surface dynamics and quantify the submesoscale surface current gradients
over all latitudes and seasons, i.e., the upper ocean deformation, with the divergences and associated local vertical velocities
in the upper ocean, strains and vorticities down to O(1-5 km) horizontal resolution, to understand their contribution to
ocean circulation, upper ocean ventilation, ocean heat uptake, CO2 sequestration, water cycle, and related vertical ocean
transport processes, and to develop data-driven downscaling parameterisations.

Figure 2 provides an illustration of many of the upper-ocean and MABL processes aimed to be studied, including phenomena
associated to tropical cyclones and their cold-wake.

3 Measurements and Products

To achieve its science objectives, Harmony will generate a series of products combining a range of techniques. In this section we
briefly discuss the different radar products.

Together with Sentinel-1, the Harmony satellites will provide measurements of the Normalized Radar Cross Section (NRCS)
corresponding to three distinct azimuth directions, forming the analogous to a very high resolution wind scatterometer. The
directional roughness of the ocean surface, and thus the NRCS, is controlled by the surface-stress vector, τ⃗ . Since it is difficult
to directly retrieve surface stress vectors, the radar-scatterometry community usually uses stress-equivalent surface wind, U10s

[5], as a proxy variable that can be derived, for example, from buoy observations of the wind vector. Compared to a conventional
three-beam wind-scatterometer, Harmony has roughly half so much azimuth diversity, but benefits from orders of magnitude
higher resolution and from perfectly simultaneous observations (something only achievable with a multi-platform solution). The
multistatic observation geometry makes the system behave similarly to a compact-pol system [6], which will provide additional
information that can be exploited to identify areas where the backscatter is enhanced due to breaking waves.

Current performance analysis show that Harmony has the sensitivity to estimate variations of the U10s vector at kilometer
resolution (or better) with an error typically well below 5% of the actual value, which is enough to capture variations due to
MABL phenomena such as convective rolls.



The second main observable is the Geophysical Doppler Centroid (GDC). To achieve high Doppler sensitivity, the Harmony
radar antenna is designed to apply short-baseline Along-Track Interferometry (ATI), providing an ATI baseline in the order of
10m. The combination of ATI capabilities with the very high nominal resolution of the measurements (20m× 5m or 5m× 5m,
depending on the operating mode ), results in a sensitivity typically in the range 0.05m s−1 to 0.1m s−1 at 2 km×2 km resolution.
However, it should be emphasized that for Harmony, like for any Doppler-oceanography mission, the retrieval of surface currents
is limited by the capability to estimate and remove the so-called wave-Doppler, which, converted to velocity, amounts to 10%
to 20% of the wind velocity [7]. Current simulations suggest that errors due to an incorrect estimation of the wave Doppler are
likely to dominate the error budget.

Harmony will also provide an improved characterization of the directional wave-spectrum. For example, it will provide three
estimates of the MeAn Cross Spectra (MACS) parameter [8] corresponding to the three effective observation geometries. This
vectorized MACS can be used to further constrain the the wind-stress vector and to provide an improved estimate of the wave
Doppler. For longer waves, Harmony will provide independent cross-spectra and extend the spectral region for which spectral
components can be resolved.

During the XTI phases, the sensitivity to all the aforementioned products will be significantly reduced. In exchange, the
particularities of the observation configuration allow for high geometric sensitivity to surface topography combined with effective
inter-satellite along-track baselines that are small enough to ensure high coherence [9]. Preliminary analysis suggest a relative
height uncertainty in the range 5 cm to 10 cm for a product resolution in the order of 3 km × 3 km for most of the IWS swath,
although the final contribution of some systematic errors, in particular that of residual phase synchronization errors, remains to
be investigated.
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On September 22, 2022, the European Space Agency announced Harmony as the 10th Earth Explorer
(EE10) mission. The Harmony concept comprises of two identical satellites that will fly in a constellation
with a Copernicus Sentinel-1 satellite ([1]). Each satellite is being designed to carry a receive-only synthetic
aperture radar as its main instrument. Working together with Sentinel-1’s radar, Harmony will provide
simultaneous measurements of wind, waves, and currents. These, along with measurements of sea surface
thermal difference and cloud motion, will enable an unprecedented view of the marine atmospheric boundary
layer.

The ocean products performance, derived in the early development phase with models and targeted
simulations, was consolidated through the use of end-to-end (E2E) simulations, following ESA’s proven
process for EE selection ([2]). The E2E simulators are a classic tool for characterizing the performance of a
mission, as defined by the science requirements. They integrate the definition of a set of geophysical truths,
the geometry and timing of the acquisition, the transfer function of the instrument, and the prototyping
of all levels of processing (On-board L0, L1, L2). At the end of the L2 processing, the estimates of the
geophysical parameters of interest can be compared to the geophysical truth sets used as an input to the
simulation.

The radar integration, modeled by the radar equation, is supported by a numerically processed spatial
integral, whose complexity of computation is related to the spatial and temporal sampling of the surface, to
the representativeness of radiometry and instrument model (antenna pattern, . . .). In the context of a SAR
system allowing, among other things, the estimation of surface currents vectors (with the ATI capability), the
simulation of raw data requires a fine description of the ocean surface both spatially and temporally. Adding
the number of phase centers, the variety of received polarization, and the extent of the scene (especially when
Sentinel-1 emits in the IW mode), the resulting computational time is considerable and is the main challenge
of the E2E design (called HEEPS/Mare for ocean application). The choice of models and implementation
strategies made it possible to achieve a data production time compatible with performance studies.

1 Ocean scene modeling

The ocean scene is considered as a collection of layers, each consisting of a mesh that is defined at given
spatial resolution and animated, if needed, at given temporal resolution. The layers are:
for the atmospheric conditions, the (spatially variant) (a) wind conditions, (b) clouds, wet troposphere.

for the time varying waves elevations, the (spatially variant) (a) aforementioned wind conditions layer,
setting local wind sea elevation spectra by virtue of a modelled relationship between wind speed and friction
velocity, (b) swell conditions, setting local swell elevation spectra, (c) surface currents, contributing to set
the local waves dispersion relationship. The local waves spectra allow for the generation of local wave
realizations thanks to the Fast-FT. Unfortunately, composing the entire surface using the tiles from the
FFTs would result in strong discontinuities at the tile boundaries. An innovative approach is used to
create smooth transitions between the local realizations.

for the surface radiometric model, a set-up that ensures a space-time cross-correlation of the back-
scattered signal that coincides with a chosen Normalized Radar Cross Section (NRCS) model ([3]) at t = 0
and whose temporal spectrum coincides with a chosen Doppler spectra model ([4]). A mesh approach is
applied, with the use of resolved waves elevation in the phase during the radar equation spatial integra-
tion, and the remaining contribution from the waves smaller than the mesh resolution (short waves) are
accounted using time varying space random complex draws. For each of the mesh facets, the spectrum of
the cross-correlation of the random variable is guaranteed to be the Doppler spectrum model computed
for short waves only, and similarly for the NRCS. In doing so, it is ensured that the effect of short wave
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motion on phase and amplitude (including its decorrelation) is taken into account. The setting of this
statistical model is put in a table which is function of meshed slopes (that can be computed at the same
time than meshed elevations, see previous item), facet size, wind speed and direction.

2 Geometry, Timing and Instrument transfer function

The spatially and temporally sampled data are acquired with respect to a specific line of sight pointing
towards Earth. For Sentinel-1, the orbit and pointing information is determined using the Earth Observation
CFI software and input state vectors. The Harmony satellites are propagated along the same orbit, taking
into account a desired separation and the reception time given the bi-static observation geometry. The
mechanical pointing is determined to be the same as that of the Sentinel-1 boresight, and the reception is
configured based on a given Sentinel-1 acquisition mode. For the reception of the signal from the simulated
ocean scene, the complex impulse response of the surface is computed utilizing input antenna models for
both emission and reception, with narrow range gates to ensure precise estimate of the returned power. This
result then undergoes a circular convolution with the chirp form to provide results expressed in sampling
frequency domain, to which thermal noise is added.

3 Processing

The processing starts with the focusing of the raw data, as detailed in [5]. The following step is the retrieval
of the main ocean products of interest in the relation to the ocean-atmosphere interactions [6].
The Doppler chain. The [L1b] Geophysical Doppler Centroid is estimated by removing the Along-Track

Interferometry lag and the geometric phase contribution to the data. For Sentinel-1, this is the Doppler
Centroid Anomaly (DCA) phase, as it delivers single phase-center data only, and the ATI phase for
Harmony, exploiting the baseline between the wing antennas. The [L2] Relative Total Surface Current
is the [L1b] geophysical Doppler where the so-called wave-Doppler contribution has been estimated by
Geophysical Model Functions (GMFs) interpolation, and removed.

The amplitude chain. The Normalised Radar Cross-Section (NRCS) is, after appropriate calibration,
a direct radar observable. The computation of the co- and cross-spectra includes the rotation of the
polarisation basis, the tiling of the data, and processing steps similar to the S1-OSW processing. The
surface stress and stress equivalent surface wind uses a GMFs that relates the stress equivalent surface
wind and the NRCS.

There are at least three observations at different Lines of sight for the L2 estimates, which makes estimation
of vectors possible (and over-determined). Parts of the Harmony L2 processing rely on the use of GMFs
to correct/estimate geophysical contributions to the signals (amplitude and Doppler). These GMFs are one
of the key elements of the mission performance study. Using GMFs based on real radar data in the E2E
context can lead to uncertainties in the conclusions, since the ocean scene modelling is not the real ocean.
A safe option has been to construct GMFs using the same models as those used in the E2E simulator.

4 Performance results

The main purpose of the simulator is to provide realistic estimates of expected Harmony performance. It
can, for example, demonstrate the capacity of Harmony to retrieve a heterogeneous 2D wind velocity field
(Figure 1) or a 2D wave spectra (Figure 2). In addition, the simulator allows to quantify performance metrics
of L1 and L2 products such as the Noise Equivalent Sigma Zero and the standard deviation in retrieved wind
and current homogeneous velocity fields. Initial results have been obtained during Phase A, and will be
consolidated with updated processing algorithm definitions and more ocean scene variety.
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Model Function (GMF) that must be applied to the modulation spectra to obtain the wave height spectra.
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1 Introduction

In September 2022, the Harmony mission [1, 2] was officially confirmed as the 10th ESA Earth Explorer. Harmony’s space
segment will consist of a pair of receive only-radar satellites that will fly in formation with Sentinel-1 which will act both as a
common radar transmitter and, from a Harmony-mission perspective, as a third radar receiver. During most of the mission one
of the Harmony satellites will fly 350 km ahead of Sentinel-1, with the other satellite trailing Sentinel-1 at the same distance. The
resulting system will provide simultaneous measurements of the Normalized Radar Cross Section (NRCS) from three directions,
implementing roughly the equivalent to a very high resolution scatterometer. In addition, Harmony will provide Doppler
measurements using short-baseline Along-Track Interferometry (ATI) in the case of the companion satellites, and falling back to
the much less sensitive Doppler Centroid Anomaly technique in the case of Sentinel-1.

The large inter-satellite separation, which is required to provide the directional diversity required to retrieve surface stress and
surface current vectors, results in unprecedented large bistatic angles. While TanDEM-X [3] has been, from a system perspective,
the first multistatic SAR mission, it is safe to say that Harmony will be the first multistatic mission from an electromagnetic
scattering point of view. The characteristics of bistatic scattering at the ocean surface have been theoretically studied in depth
[4, 5]. However, experimental data is required to fully validate and fine tune these scattering models. To serve that purpose,
given the lack of available bistatic observations, ESA organized a multistatic airborne campaign in the Dutch Wadden Sea, with
Metasensing as the prime contractor.

The main goals of the WaddenSAR campaign were:

1. To demonstrate the Harmony mission concept.

2. To test the proposed airborne implementation for use in future campaigns.

3. To confirm that the assumption that bistatic measurements behave largely like monostatic ones with a monostatic-equivalent
geometry. Confirming this assumption allows using monostatic airborne data, which are much easier to collect, as a proxy
for bistatic data in the development of, for example, retrieval algorithms.

The WaddenSAR flights took place on the 14th and 16th of March, 2022. This paper provides an overview of the campaign
set-up and discusses some preliminary results.

2 Campaign description

During the campaign, Metasensing flew two Cessna C208 aircraft in a formation emulating Harmony’s multistatic viewing
geometry. As shown in Figure 1, the trailing aircraft carried a FMCW C-band radar, transmitting in V-polarization and
receiving in two polarizations. The leading aircraft carried a receive-only radar payload with the dual-polarized antennas pitched
29.5◦ in order to align the receive-antenna footprint with that of the transmitter. Along-track interferometric observations where
achieved by toggling in transmit between a pair of antennas separated about 0.8 meter. The raw data were focused on a regular
ground-projected grid aligned with he flight direction using a back-projection algorithm. Table 1 provides a list of some relevant
geometric and radar parameters.

On the first flight day, about 400 km of data was acquired flying a circuit in an open-sea region, North of the Wadden Islands.
On the second day, after solving some technical issues, over 200 km were acquired mostly inside the Wadden Sea. Figure 2 shows
the planned acquisition tracks overlayed on the total current predicted by the Dutch Continental Shelf Model in Flexible Mesh
(DCSM-FM) model developed and implemented by Deltares.
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Figure 1: Left: bistatic receive-only radar installed on the leading aircraft, with the dual-pol antenna tilted to provide overlapping
antenna footprints. Right: transmit-receive system installed on trailing aircraft, with two transmit antennas toggled in order to
implement ATI.

3 Results

Very preliminary results (not included in this abstract) show that both the monostatic and bistatic amplitudes are of good
quality and generally similar to each other, as expected. The quality of the monostatic ATI phase should be enough to capture
some of the strong tidal features shown in the model. At time of writing, the bistatic ATI phase shows large systematic range
dependent phases, which the authors hope to have understood and mostly cleaned up during the workshop.

Figure 2: Planned flight tracks in the Wadden Sea overlayed on tidally dominated local currents predicted using the Dutch
Continental Shelf Model in Flexible Mesh (DCSM-FM) model developed at Deltares.
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Flight & Observation geometry
Flight altitude ∼1550m

Aircraft along-track distance 1100m to 1400m
Flight speed ∼60m s−1

Angle of incidence (monostatic) 25◦ to 45◦

Swath width ∼1200m
Radar parameters

Center frequency 5.3GHz
Azimuth single-look resolution 0.5m

Slant-range single-look resolution 2.8m
ATI baseline 0.8m

Transmit polarization V
Receive polarization Dual (H and V)

Table 1: Radar and observation geometry characteristics
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1. INTRODUCTION 

Sea ice plays a crucial role in the Earth's climate 
system and global ecology. Its presence 
significantly influences the planet's energy 
balance by reflecting sunlight, helping regulate 
temperatures, and influencing ocean circulation 
patterns. Sea ice also serves as a habitat and a 
crucial feeding ground for various marine 
organisms, supporting complex ecosystems from 
microscopic algae to large mammals such as 
polar bears and seals. Additionally, the freezing 
and melting processes of sea ice impact ocean 
dynamics and, in turn, affect weather patterns and 
the livelihoods of coastal communities. 
Importantly, sea ice can be viewed also either as 
an obstacle for navigation or as an extension of 
land used by local communities for travel and 
hunting. Understanding the dynamics and 
importance of sea ice is essential for predicting 
climate changes and their potential impacts on 
both local and global scales. 
 
Synthetic Aperture Radar (SAR) remote sensing 
is a key tool for monitoring and studying sea ice 
due to its unique capabilities in all-weather and 
day-and-night imaging. The importance of SAR 
remote sensing in the context of sea ice lies in its 
ability to provide high-resolution data, offering 
detailed information about sea ice distribution, 
type, and dynamics over vast and often remote 
regions. SAR sensors can penetrate through 
clouds and darkness, allowing continuous 
observation and monitoring of sea ice cover 
regardless of weather conditions. These 

observations are fundamental for understanding 
the changing patterns of sea ice extent, thickness, 
and movement, enabling the assessment of ice 
dynamics, identification of different ice types, 
such as ridged, deformed, or open water areas, 
and the tracking of ice movement and 
deformation. Such data is invaluable for climate 
studies, weather forecasting, fishing and hunting, 
safe navigation, ecosystem monitoring, and 
aiding in the understanding of the broader 
implications of climate change and human 
activities on polar regions. SAR remote sensing, 
therefore, plays a pivotal role in providing 
essential data for scientific research and policy-
making concerning sea ice and its dynamic 
responses to changing environmental conditions. 
In this work we summarize recent advancements 
in SAR remote sensing of sea ice presented at the 
SeaSAR’23 conference and provide a synopsis of 
the main challenges and recommendations. 
 
2. OVERVIEW OF RECENT 
ACHIEVEMENTS 
 

2.1  Copernicus Marine Service SITAC 
SAR-Based Baltic Sea Ice Products 

The Baltic Sea ice drift product in the Copernicus 
SITAC is provided by Finnish Meteorological 
Institute (FMI).  The algorithm is a two resolution 
(referred as low and high resolution) level model. 
Co-registered dual-polarized (HH/HV) C-band 
SAR images from Sentinel-1, Radarsat-2 or 
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Radarsat Constellation Mission are first 
converted to single channel images by computing 
the SAR backscatter magnitude M=(HH2 + 
HV2)1/2 from the two calibrated SAR channels. 
After this ORB (Oriented FAST and Rotated 
BRIEF, Rublee et al., 2011) is applied to detect 
ice drift in a reduced resolution of 500 m. This 
low-resolution result is then interpolated to cover 
the whole sea ice area. Optical flow (Horn and 
Schunck, 1981) is applied to high-resolution 
magnitude images using the low-resolution drift 
as an initial shift between the two images. The 
Lucas-Kanade Optical flow (Lucas and Kanade, 
1981) is applied in the algorithm. Lucas-Kanade 
algorithm assumes that the optical flow equation 
holds for a block of pixels and the motion is 
solved by a least-squares fit. A simplified 
algorithm flow diagram is presented in Fig. 1. 
  

Figure 1. Structure of the operational FMI SITAC 
ice drift algorithm. A pair of overlapping images 
in input and first co-registered and resampled to 
100 m resolution, then magnitude images of the 
two SAR channels are created, they are re-
sampled to 500 m resolution and fed to the ORB 
feature detection and matching algorithm. The 
500 m (low-resolution) drift detection is then 
interpolated to cover the image sea ice area. The 
low-resolution SID is then used as a starting 
point to the optical flow drift detection applied to 
the full-resolution magnitude images to refine the 
low-resolution ice drift estimation. 
 
2.2 Tracking backscatter signatures of 
individual sea ice floes using in-situ drift 
observations 

At present, most of the SAR data that is routinely 
available for sea ice monitoring is acquired in 
wide-swath mode at C-band, for example by 

Sentinel-1 (S1). For these sensors, the backscatter 
signal from a given sea ice type varies with 
incidence angle (IA) across the swath (Lohse et 
al., 2020), and it is strongly affected by changes 
in temperature and snow properties (Barber et al., 
1992). Understanding these variations in 
backscatter is crucial for the interpretation and 
automated analysis of the imagery. 
 
The seasonal evolution of C-band radar 
backscatter has been extensively studied for 
landfast ice (for example in (Yackel et al., 2000)), 
but seems rare for drifting ice. Tracking drifting 
ice floes in consecutive SAR images over long 
timespans has proven to work well in winter but 
remains challenging in melting conditions or in 
regions characterized by high drift speeds 
(Krumpen et al., 2019). In this study, we use a set 
of in-situ drift trajectories collected during the 

CIRFA-22 campaign to track individual ice floes 
in the Fram Strait over several months, covering 
the transition from freezing conditions to warmer 
melting conditions.  
 
We automatically identify the drifter locations in 
overlapping S1 imagery and manually identify 
and track distinct surface features (hereafter 
called ‘ROIs’) in the vicinity of the drifters that 
can be followed over time in the SAR images. On 
short timescales (days), this allows us to 
investigate the IA dependence of the backscatter 
signature for the exact same sea ice, while on 
longer timescales (weeks), we can study the 
temporal backscatter evolution of drifting ice as 
it undergoes physical changes at melt onset.  
 
We investigate the IA dependence by estimating 
the slope relating IA to backscatter based on the 
backscatter values of a ROI imaged in two 
consecutive SAR scenes, once in near-range and 
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once in far-range. We only estimate slopes during 
freezing conditions, as we assume that no 
physical changes occur on the ice surface 
between two consecutive SAR acquisitions. The 
average slope estimate per ROI is then used to 
correct all backscatter values in the time series by 
projecting the values onto a common incidence 
angle. Next, we make a distinction between 
ROI’s labeled on first-year ice (FYI) versus 
multiyear ice (MYI). We apply the incidence 
angle correction scheme individually for each ice 
type. An example based on one in-situ drift 
trajectory is shown in Fig. 2. As a general trend, 
we observe that backscatter values drop for MYI 
at melt onset, while backscatter values rise for 
FYI. The shift results in an inversion of the 
backscatter values per ice type shortly after melt 
onset. Note that at melt onset the backscatter 
values of both ice types overlap, which means 
that FYI and MYI are statistically inseparable in 
the SAR imagery at this moment. More case 
studies are needed to confirm that the backscatter 
intensity inversion consistently happens for FYI 
and MYI after melt onset. 
 

Figure 2. The seasonal evolution of incident 
angle-corrected radar backscatter values of first 
year ice (FYI) and multiyear ice (MYI), for HH 
and HV polarization channels. 
 
2.3 Potential of the Earth Explorer 10 
candidate “Harmony” for Studying Sea Ice 
Deformation 

An alternative to sea ice drift observation on 
consecutive SAR images is estimation of 

instantaneous surface motion from Doppler shift 
anomaly fields (Kramer et al., 2018; Wang et al., 
2023). However, data from only one SAR 
antenna can provide only one component of ice 
motion. Harmony, the candidate for the ESA 
Earth Explore 10 mission, promises to provide 
both components. Two Harmony satellites will 
fly in a reconfigurable formation with S1-D. Both 
will be equipped with a passive antenna, which 
receives the reflected S1-D signals. In the stereo 
formation, the Harmony satellites will fly 
approximately 300 km in front and behind S1, 
which allows for the estimation of instantaneous 
sea-ice drift vectors. As was shown by 
Kleinherenbrink et al. (2021) the sea ice drift and 
deformation can be derived from simulated 
Harmony data, but the signal-to-noise ratio is 
quite low. 
 
Here we use the next generation sea ice model 
neXtSIM (Ólason et al., 2022) for simulating ice 
drift, and the end-to-end Harmony simulator 
(Kleinherenbrink, 2021a) to generate Doppler 
shift fields and derive ice motion from the 
synthetic Harmony data. We evaluate if we can 
use Harmony data for characterising sea ice 
deformation in the Arctic Ocean and validation of 
neXtSIM. 
 
We compute 2D fields of Doppler shift from 
Concordia, Discordia, and Sentinel (DC(R,A), 
DD(R,A), DS(R,A)) and the thermal noise 
equivalent sigma zero (NESZ) of the Doppler 
signal (ND(R,A)) with the forward model (FM) of 
(Kleinherenbrink et al., 2021b): D, ND = FM (U), 
where U is the neXtSIM-simulated ice drift field. 
Thermal noise is added as a product of noise 
equivalent sigma zero (NESZ) profile and 
normally distributed noise (N): DN = ND * N. 
Noise correction is performed for each field of D 
individually as follows. Given that the profile of 
NESZ is known a priori we can perform “texture 
noise” correction suggested by Park et al. (2019) 
for reducing amplitude of signal variations near 
inter-swath boundaries where NESZ is the 
highest: D1 = Gf(DN)*NN + DN*(NN – 1), where 
Gf is a 2D Gaussian filter with size of 10 pixels 
(20 km) and NN is the ND normalized into range 0 
– NMAX, with NMAX = 0.7 being found empirically. 
Next, we apply a low pass filter as suggested in 
(Kleinherenbrink et al. 2021b, Eqs. 19 – 22): D2 
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= Kf(D1, D). And finally, we apply the 
anisotropic diffusion filter (Perona and Malik, 
1987) for smoothing homogeneous U/V fields 
and preserving high contrasts: D3 = ADf(D2, 
gamma=0.25, kappa=5). 
 
Velocity fields (U3) are reconstructed from the 
denoised Doppler shift fields D3 using the 
retrieval model (RM) of Kleinherenbrink et al. 
2021b: U3 = RM(D3), and are denoised with 
clustering (grouping of pixels with similar 
velocities and coordinates). We apply clustering 
under the assumption that sea ice deforms as a 
solid body with low elasticity and ability for 
brittle break-up. Therefore, the neighbor elements 
can have either the same velocity (when they 
belong to an unbroken ice, i.e., an ice floe) or 
differ substantially (when they belong to different 
ice floes). After the clustering is performed, the 
small-scale variability on the edges of clustering 
is reduced by applying a median filter to the 
image with labels (Fig. 3). 
 
 

 
Figure 3. Velocity components after the steps of 
processing: U – initial range and azimuth 
components, U3  – low-pass and anisotropic 
diffusion, U4  – clustering. 
 

For evaluating Harmony data and our inversion 
algorithms we simulate ice motion with neXtSIM 
on pan-Arctic scale and generate 15 swaths of 
Harmony observations for the 1 January 2019. 
We compute the divergence (Ñ) and shear (t) 
components of sea ice deformation from the 
velocity fields U3 and U4 using the method of 
Kleinherenbrink et al. 2021. A daily mean 
deformation map is created by averaging 
individual swaths.  
 
Our results show (see Fig. 4) that realistic sea ice 
deformation fields can be derived from Harmony 
data: the major features north of Greenland, 
Canadian Archipelago and Laptev Sea are well 
visible. Method “4” seems to be better capturing 
also small deformation features and producing a 
less noisy map. Comparison of PDFs shows that 
deformations produced by both methods capture 
the strong, large-scale features with deformations 
rates of ~ 0.01 d-1. Nevertheless, only the method 
“4” reproduces the small magnitude deformation 
(< 0.001 d-1). 
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Figure 4. Maps of shear (t) computed from 
simulated velocities (1st column) and from 
Harmony denoised velocities using U2 (2nd 
column) and U3 (3rd column). PDFs of total 
deformation (blue – neXtSIM, orange – U2, green 
– U3). 
 
2.4 Towards Multitemporal Sea Ice 
Classification by Means of Spaceborne SAR 
Image Time Series 

Since the advent of satellite borne SAR, many 
approaches for SAR based sea ice type 
classification have been developed (Zakhvatkina 
et al., 2019). The most promising approaches 
have been transferred to operational services. 
Nevertheless, obtaining accurate classifications 
year-round is still a challenge. Different ice 
classes can show similar radar backscatter 
responses, which limits the performance of sea 
ice classification. Seasonally, the radar 
backscatter signal can be affected by 
precipitations, e.g., wet snow obscures 
information about underlying ice types (Kortum 
et al., 2022). 
 
To stabilize automated classification, we describe 
here a new approach on multitemporal sea ice 
classification. The basic idea is to use collocated, 
sequential SAR acquisitions taken over a region 
of interest, and - in a first step - generate high 
resolution drift vector fields from these data, 
using, e.g., phase correlation as presented in 
(Frost et al., 2018). Using the retrieved drift 
vector information, we can track drifting pieces 
of ice (such as an ice floes) from one SAR 
acquisition to the next and collect more SAR 
measurements about the floe. The collected SAR 
measurements are then used jointly to classify the 
sea ice.  

The core of our sea ice classification algorithm is 
an adjusted UNET++ convolutional neural 
network (CNN) architecture described by (Frost 
et al., 2018). In our specific implementation, the 
classification is done tile-wise, i.e. a SAR 
acquisition is divided into tiles, classified, and 
then the results are joined back to generate an ice 
map (Zhou et al., 2019). We differentiate MYI, 
FYI, young ice (YI), open leads (split in so-called 
dark leads (DL) and bright leads (BL)) and rough 
ice (RI). However, many classification methods 
allow to model a discrete probability distribution 
of sea ice types for each pixel. In general, the ice 
type with the highest probability is then selected 
as the final classification result. In contrast, in our 
multitemporal approach, several (sequential) 
discrete probability distributions of ice types are 
examined after drift compensation. For our first 
tests, we selected the most likely ice type from 
these subsequent probability distributions.  
 
Our experimental results performed on a S1 
image time series taken over the Arctic Ocean 
show that the multitemporal approach in parts 
improves the classification. It can correct obvious 
misclassifications that were generated from 
single SAR acquisitions. Overall, the 
multitemporal approach is a powerful tool to 
generate sea ice classifications with increased 
reliability and overcome short term surface 
changes that have no relevant influence on the sea 
ice in its core.  
 
Note that for fusing probabilities, various 
approaches can be applied, namely Kalman filter, 
Bayesian networks, and Dempster-Shafer. In 
ongoing work, we consider Kalman filtering and 
incorporate a priori knowledge to forbid 
impossible class changes e.g. from YI to MYI and 
vice versa.    
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2.5 Preliminary results of Sea Ice 
Classification using combined Sentinel-1 
and Sentinel-3 data 

A sea ice classification was trained using a 
combination of SAR from S1 and an existing sea 
ice classification using optical-thermal data from 
the SLSTR sensor on board Sentinel-3 (König et 
al., 2021). In radar data, some ice classes exhibit 
a similar backscatter, limiting the applicability of 
radar-based classification. Sentinel-3 data contain 
optical/thermal information of water, ice, and 
snow, allowing a refined ice class separation after 
classification, but the observations are in lower 
resolution and clouds may obstruct the view. 

 
The fused classification is based on a 
Convolutional Neural Network (CNN) classifier 
and discriminates six sea ice types. A similar 
setup and method of classification was introduced 
before for SAR-only sea ice classification 
(Murashkin et al., 2021). The fusion input data 
are the HH and HV polarization channels of the 
S1 image plus classified Sentinel-3 SLSTR 
images with continuous RGB labels. 
 
The results shown here are derived from an early, 
limited training data sample of 12 data stacks. 
Fig. 5 shows a comparison of the classification 
results between the SAR-only classification in 

panel (a), using only the SAR data for training 
and inference, and the fused classification in 
panel (b), which identifies the open water on the 
right correctly. 
 
The presented preliminary results suggest that the 
fused sea ice classification from SAR and optical 
images can improve the results, especially in 
open water and lead detection. Further training 
and validation are currently ongoing. This fused 
classification is to become part of a near-real time 
sea ice information generation and delivery chain, 
where also the individual classifications from 
SAR and SLSTR are made available to the end 
users due to their much higher availability 
compared to fused results. 

 
 
Figure 5. Example classification results. (a) SAR 
classification using only S1 data, (b) fused 
classification using SAR data and an SLSTR 
classification. Most open water areas are 
identified correctly by the fused classification. 
Note that the same cloud mask is applied to both 
scenes, causing the frayed black areas on the 
right. 
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2.6 Combining C- and L-band SAR imagery 
for automated sea ice classification and 
segmentation 

In the light of ESA’s upcoming L-band SAR 
mission ROSE-L, the benefits of combining C- 
and L-band SAR data for operational sea ice 
charting have been investigated in the project 
Synergistic Use of L- and C-Band SAR Satellites 
for Sea Ice Monitoring (LC-ICE). Work package 
3 of the project focused on the investigation of 
automated classification and segmentation. 
 
In this study, we used a set of 161 aligned image 
pairs that were acquired over three different test 

sites in the Arctic (Belgica Bank, Fram Strait, and 
Lincoln Sea) and for which the sea ice drift during 
the time interval between the C- and L-band 
acquisition was compensated using an algorithm 
developed at Chalmers University of Technology 
(Demchev et al., 2023).  
 
Figure 6. Example AOI with overlapping C- and 
L-band imagery (RGB: HV, HH, HH) and 
corresponding single- and multi-frequency 
classification results from the East Greenland 
test site. Training and validation ROIs are 
indicated on the SAR imagery. Ice type 
abbreviations are Open Water (OW), Young Ice 
(YI), Level Ice (LI), and Deformed Ice (DI).  
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After visual inspection of the data, we selected an 
area of interest (AOI) within each pair that is 
suitable for the study of multi-frequency 
classification. The purpose of the AOI selection 
was to choose areas that are as large as possible, 
but small enough to avoid IA effects, visible 
swath boundaries, the influence of sensor noise, 
or artifacts from the image alignment process. We 
then applied both supervised classification and 
unsupervised segmentation algorithms on the 
selected AOIs using algorithms developed by 
Lohse et al. (2020) and Doulgeris (2015), 
respectively. Both methods were applied on each 
AOI for three separate test cases: (1) C-band 
stand-alone, (2) L-band stand-alone, (3) C+L-
band. We evaluated the classification results in 
terms of per-class classification accuracy (CA) 
based on manually selected validation regions of 
interest (ROI)s.  
 
Fig. 6 shows an example AOI and the 
corresponding classification results. Our 
unsupervised segmentation method automatically 
finds the number of clusters in data for a given 
sensitivity setting. As we increase the 
segmentation sensitivity and produce more 
clusters, we used the Jeffries-Matusita distance as 
a separability measure to find the maximum 
number of statistically separable classes for each 
case. 
 
Our results show that the multi-frequency 
approach (C+L-band) generally outperforms the 
single-frequency approaches. For the supervised 
classification, we find that the dual-frequency 
approach achieves the highest CA in 98% of all 
test cases. In regions of deformed ice, the L-band 
stand-alone classification can sometimes perform 
almost equally as well as the dual-frequency 
classification. However, especially in lead areas 
with open water, newly formed ice, and young 
ice, the combination of C- and L-band is almost 
always superior to either of the single-frequency 
approaches. For the unsupervised segmentation, 
the combination of C- and L-band finds on 
average 2.4 more clusters than C-band alone, and 
1.0 more clusters than L-band alone. This 
underlines the complementarity of the 
information content of both frequencies. Based 
on these findings, we conclude that a tandem 
flight pattern for the ROSE-L and the Sentinel-1 

missions would be the most beneficial from a sea 
ice classification perspective. 
 
2.7 High resolution L- and C-band 
polarimetric variability during MOSAiC 

Separation between deformed sea ice and high-
backscatter YI areas is one of the remaining 
challenges for automatic classification of sea ice 
types in synthetic aperture radar (SAR) images. 
Polarimetric features derived from fully-
polarimetric or compact polarimetric imagery 
may aid this separation. Upcoming L-band 
missions such as NISAR, ALOS-4 and ROSE-L 
will offer the advantages of fully polarimetric 
acquisitions along with higher ground coverage to 
achieve an optimal scenario for L-band SAR 
based sea ice monitoring and will ensure a steady 
supply of L-band imagery in the years to come 
covering both the Artic and Antarctic sea ice.  
Previous studies e.g., (Johansson et al., 2018; 
Mahmud et al., 2020; Toyota et al., 2020) have 
shown that L-band SAR can provide improved 
separability between different sea ice types. The 
different wavelengths mean e.g., different 
penetration depths and different sensitives to the 
onset of melting e.g. (Casey et al., 2016). In 
Mahmud et al., (2020) L-band data was shown to 
provide easier separation between FYI and MYI 
in the early and advanced melt season. 
 
Here we investigate the usefulness of the 
polarization difference (PD: VV-HH) for the 
detection, separation, and characterization of YI 
areas in L- and C-band SAR images collected 
during the MOSAiC drift study. The drift lasted 
from the freeze-up to the early melt season, 
ensuring that the temperature dependency is also 
examined. We observed that PD has positive 
values for open water and new ice areas, i.e. HH 
> VV, whereas the values turn negative for the 
young ice stage and stabilize around 0 for the 
thicker sea ice types. The polarization difference 
was found to provide separability between 
younger ice types and thicker sea ice and provide 
good separability between high backscatter YI 
and MYI, in both C- and L-band SAR images, and 
hence provides a complement to the co-
polarization ratio that can primarily separate the 
newer sea ice types. The variability in PD was in 
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L-band SAR was found to be a useful indicator of 
early melt stages, due to the shift from stronger 
VV to stronger HH data. The same trend could not 
be observed in the C-band images, and as such the 
two frequencies complemented one another. SAR 
images from the CIRFA cruise in 2022 at the 
Belgica Bank fast ice was found to confirm this 
analysis and the usefulness of PD will be further 
investigated using both the MOSAiC, N-ICE2015 
and the CIRFA cruise data, utilizing overlapping 
L- and C-band images that co-inside with in-situ 
measurements. 
 
2.8 Quadruple Helix Framework for Sea Ice 
Monitoring: Next Steps 

Ice covered Arctic areas remain severely under-
monitored and not well known to the broad 
public. Current ecosystem mapping proposals via 
the EU’s Biodiversity Strategy for 2030 do not 
explicitly include in-situ measurements as a part 
of the mapping. Without in-situ monitoring, rapid 
localized changes in ecosystem's conditions 
cannot be detected. As a result, our ability to 
predict rapid changes of the environment and 
manage the effects of environmental change will 
remain severely limited. Furthermore, as waves 
of urbanization and immigration as well as the 

widespread of digitalization continue, there is 
limited human engagement, and participation in 
monitoring of nature and a further disassociation 
with it. We illustrate the above challenges using a 
quadruplex helix framework for monitoring of 
sea ice as an example. The framework (shown in 
Fig. 7) relates sea ice knowledge at different 
spatial and temporal resolutions to each other 
(i.e., remote sensing, in-situ scientific 
measurements, citizen science, and indigenous 
knowledge)  
 
Users from the maritime sector are not always 
able to validate and trust satellite products when 
looking at rapid and localized events or changes 
in sea ice conditions. This shortcoming can be 
addressed using technology for automated 
collection, processing, and quality control of the 
ground-truth sea ice data. A three-stage approach 
for the automated analysis of close-range optical 
images containing floating ice is described in 
Panchi et al. (2021). The proposed system is 
based on an ensemble of deep learning models 
and conditional random field postprocessing.  
 
Figure 7. Quadruplex helix framework for sea ice 
monitoring and its challenges.  
 



 10 

The following surface ice formations are 
considered: icebergs, deformed ice, level ice, 
broken ice, ice floes, floe bergs, floe bits, pancake 
ice, and brash ice as well as additional five non-
surface ice categories: sky, open water, shore, 
underwater ice, and melt ponds. The best 
performance is achieved using an ensemble of 
models having pyramid pooling layers (PSPNet, 
PSPDenseNet, DeepLabV3+, and UPerNet) and 
convolutional random field postprocessing, and 
this outperformed the best single-model 
approach. The results show that when per-class 
performance was considered, the sky is the 
easiest class to predict, followed by deformed ice 
and open water. Melt pond is the most 
challenging class to predict. More efforts will be 
needed to make this automated image 
segmentation and analysis fully operational for 
remote sensing applications—especially the 
collection and labelling of more images 
containing floeberg, floebit, and melt ponds and 
introducing new labels. In situ verification, 
validation, and possible corrections to ice 
segmentation would go a long way in providing 
more training data and improving the proposed 
approach. When coupled with optical sensors and 
GNSS, such an approach can serve as a 
supplementary source of large-scale ‘ground 
truth’ data for validation of satellite-based sea-ice 
products. 
 
In addition, sea ice data users (e.g., maritime 
sector) increasingly require spatially explicit 
information on the uncertainty of sea ice 
parameters for evaluating the risk that a specific 
outcome of further analysis of the information 
will be incorrect. It is, therefore, a priority to 
develop and standardize methods to compute 
consistent and comparable error estimates for sea 
ice datasets. This is particularly important for in-
situ observations since realistic uncertainty 
estimates are essential for meaningful integration 
of these data in remote sensing and other higher-
level products and studies (automated sea ice 
charting, climate modelling, etc.). 
 

3. REMAINING KNOWLEDGE GAPS 
AND CHALLENGES  

In the field of SAR remote sensing of sea ice, 
several knowledge gaps persist, necessitating 
further investigation and development. One 
critical issue is the presence of high thermal or 
speckle noise. Effective noise suppression 
techniques that maintain image resolution are 
essential. The implications of noise on the 
accuracy of ice drift and deformation 
measurements need thorough examination. The 
loss of the Sentinel-1B satellite has reduced data 
coverage, emphasizing the need for access to 
RCM data and algorithm adaptation. Thermal 
noise reduction is particularly needed for the 
RCM cross-polarization channel due to the strong 
scalloping effect and significant noise patterns, 
which affect automated SAR interpretation 
algorithms. 
 
Another challenge is the low contrast in SAR 
images, particularly in wet snow conditions 
during summer and broken ice within the MIZ. 
Enhancing the informativeness of SAR image 
patches is crucial for robust sea ice drift retrieval 
based on Maximum Cross-Correlation (MCC) 
methods. Utilizing HH and HV polarization 
channels simultaneously may offer a solution, but 
efficient methodologies need to be developed. 
 
Rapidly changing surface conditions, such as 
melting in summer and heterogeneous drift in the 
MIZ, complicate image analysis. Adapting the 
time delta between images is necessary, and 
identifying the optimal time interval is critical. 
The inherently different patterns observed in C-
band and L-band SAR imagery further 
complicate MCC and alignment evaluation, 
necessitating methods to compare and align these 
datasets effectively. At the same time image 
alignment algorithms face significant challenges 
due to floe rotation and other fast surface 
changes, which complicate image morphing. 
More efficient image generation and morphing 
techniques are needed, as well as new metrics for 
evaluating aligned multi-frequency imagery. 
 
Sea ice numerical models need a proper 
Lagrangian Sea Ice Drift product for thorough 
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calibration and validation. However, despite 
current SAR missions, such as S1, Radarsat-2 
(RS2), and the RCM provide vast amounts of 
SAR imagery, there is currently no replacement 
for the ice drift product produced by the Radarsat 
Ground Processing System (RGPS) (Kwok et al., 
1998). Obviously, the handling of large SAR 
datasets (Big Data) demands optimized 
algorithms and adequate hardware resources. 
Sea ice is highly diverse, and some categories, 
such as new ice, are underrepresented. Improving 
the representation of all ice types in SAR data and 
addressing low prediction accuracy in under-
represented categories is critical. Strong winds 
and the presence of new or young ice further 
complicate classification, necessitating improved 
quality of label data and mitigation of systematic 
biases in ice charts. 
 
The role of snow in influencing radar signatures, 
including snow metamorphism and the effects 
under dry freezing conditions, must be better 
understood. Investigating the impact of wind-
compacted layers, rain-on-snow events, ice lenses 
within the snowpack, and the brine layer at the 
snow-ice interface, particularly in relation to C- 
and X-band SAR, will improve the interpretation 
of radar data. The L-band's relative insensitivity 
to these factors should also be considered. 
 
Inconsistent classification results across multi-
temporal images presents another challenge. 
Developing methods to improve consistency and 
address these inconsistencies is necessary. 
Furthermore, machine learning (ML) and deep 
learning (DL) models, often considered black 
boxes, require efforts to elucidate the physical 
relationships between input features and the 
theoretical informativeness of SAR images to 
infer multiple ice types. 
 
Multi-sensor synergy offers enhanced temporal 
and spatial coverage when combining data from 
multiple sensors. However, the time delays 
between acquisitions, particularly in regions with 
high sea ice drift speeds like Fram Strait, pose 
significant challenges. Data alignment is crucial, 
but temporal gaps in multi-sensor data can be 
problematic. Combining SAR with optical 
satellite data may offer advantages for various sea 
ice tasks, for instance, infrared sensors can 

differentiate between thin and thick ice by heat 
fluxes, optical sensors can identify open water, 
snow-covered sea ice, and ridges under favorable 
illumination, and SAR can penetrate snow and 
reveal ice structures, although separating ice from 
water remains challenging. However, 
overcoming the time separation between image 
acquisitions remains a key issue. 
 
Upscaling and downscaling between different 
observational modes, from in-situ to drones, 
airborne, and satellite data, to models, requires 
careful consideration of ice motion. Large spatial 
coverage over study sites can help mitigate issues 
with overlapping drifting in-situ campaigns, 
enhancing the overall understanding and 
monitoring of sea ice dynamics. 
 
4. OUTLOOK AND 
RECOMMENDATIONS 

4.1 Algorithm Improvement 

To enhance the retrieval of sea ice drift from SAR 
imagery, the implementation of deep learning 
techniques is recommended. Post-processing 
methods such as discarding, optimization, and 
interpolation of drift vectors should be developed 
to refine the data quality. Furthermore, the 
optimization of time intervals between SAR 
image acquisitions is crucial for improving the 
accuracy of ice drift measurements. Algorithms 
must be optimized for parallel processing, and 
more resources should be allocated for 
processing. 
 
4.2 More Input Data 

An operational L-band SAR constellation should 
be launched to improve data coverage and 
quality. Collocating datasets from various 
missions, including passive microwave, 
altimetry, scatterometry, and SAR, will enable 
synergetic use and enhance the robustness of sea 
ice monitoring. Incorporating additional 
variables into automatic algorithms will improve 
their accuracy. These variables include wind 
speed, solar radiation, optical data VIIRS, PMW 
data from AMSR2, RS2, RCM, high-resolution 
Sea Surface Temperature (SST), radar and laser 
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altimetry, multi-frequency and multi-polarization 
data, and sea ice deformation data. 
 
Improving time separation between different 
SAR sensors and leveraging tandem missions like 
S1 and ROSE-L for automated ice type 
classification are recommended. A fleet of mixed 
micro-satellites, such as those from Capella 
Space, could be an option when time delays of 
less than one hour are acceptable. The use of 
RCM mode HH+VV over polar regions in 
summer, and combining sea ice deformation with 
thermodynamics for classification, should be 
explored. Identifying the contributions of L-band 
SAR for improved sea ice products and 
enhancing collaboration between different sensor 
acquisitions will maximize the potential of multi-
sensor synergy. 
 
4.3 Better Training and Validation Data 

High-resolution verification data from other 
satellites or in-situ measurements coinciding with 
SAR data are crucial for accurate training and 
validation. Ridges, leads, and roughness data 
from altimetry, which are free from inherent 
biases in manual ice charts, should be utilized. 
Building a solid training dataset, including 
challenging conditions such as wet ice in summer 
and windy water, with many scenes similar to 
AI4Arctic, will improve model robustness. 
Cross-calibration of ice experts through 
evaluation of ice charts is also necessary. 
 
4.4 Better output Products 

Increasing the temporal resolution of ice drift 
products is essential. Developing a high-
resolution, long-term Lagrangian sea ice drift 
dataset will provide valuable insights into sea ice 
dynamics. Additionally, combining sea ice drift 
data with thermodynamic models can facilitate 
the retrieval of sea ice thickness, thereby 
improving the overall understanding of sea ice 
properties. Satellite data should also be used to 
derive new variables, such as the probability of 
belonging to an ice category, deformation, ridges, 
leads, and aerodynamic roughness. Developing 
fit-for-purpose ice products tailored for ice charts 

or for models is essential for providing relevant 
and actionable information. 
 
4.5 Improved Applications 

A move towards integrated systems combining 
satellite observations, data assimilation, and 
modeling is recommended. The use of Structural 
Similarity (SSIM) as a metric for evaluating the 
alignment of multiple SAR images should be 
explored. Sea ice drift and alignment algorithms 
must be tested under various weather and drift 
conditions to ensure robustness. Reducing noise 
in Harmony data and using it to detect the MIZ, 
where mobile ice with high concentrations is 
present, will enhance detection capabilities. 
Practical predictability of linear kinematic 
features in sea ice should be estimated and 
improved. Developing new metrics for model 
calibration and validation using ice drift and 
deformation data is necessary. 
 
Integrating ML-based ice type products into ice 
service routines will aid ice analysts. Combining 
ice type observations with ice drift forecasts to 
predict ice types and ship routes will enhance 
navigation safety. Forecasting SAR images by 
integrating them with ice drift forecasts will 
improve operational planning. 
 
Different products should be assimilated in 
various regions for both operational and 
reanalysis purposes. The impact of assimilating 
different products, such as Sea Ice Concentration 
(SIC) and Sea Ice Drift (SoD), must be evaluated, 
and uncertainties characterized better. 
Interpreting the results of 'black box' 
Convolutional Neural Networks (CNNs) will 
transform machine learning insights into human 
learning. Developing a forward model for sea ice 
backscatter, where SAR image texture reflects the 
history of ice deformation, is essential for 
advancing sea ice physics understanding. 
 
4.6 Targeted In-Situ Data Collection and 
Sharing 

Targeting in-situ data campaigns for satellite 
product validation and overlapping permanent 
stations with repeated satellite passes will 
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improve data quality. In-situ data collection 
should be tailored to address specific scientific 
questions, and connections between ground radar 
observations, drones, and SAR for upscaling 
should be established. Openly available multi-
sensor API for routine overlapping in-situ + 
satellite sensor planning. Coordinating 
observations from space, drones, above sea ice, 
and below sea ice will enhance data integration. 
Improving procedures for quality control of in-
situ data and deploying more drifters on 
underrepresented sea ice types, such as FYI and 
fast-drifting sea ice, are critical. 
Increased use of georeferenced drone images for 
training and validation of satellite data products 
is recommended. Drone flights should be planned 
to address scientific and operational questions, 
and used for instantaneous sea ice drift retrieval 
connected with SAR observations. Drones' long-
distance capabilities allow for detailed optical 
and infrared mapping below cloud cover and 
simultaneous with SAR acquisitions. 
 
By addressing these recommendations, 
significant advancements can be made in the field 
of SAR remote sensing of sea ice, enhancing the 
accuracy and reliability of sea ice monitoring and 
forecasting. 
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1. Background  
Numerous new satellites and sensors have emerged 
together with continuity missions during the past two 
decades (https://database.eohandbook.com). Altogether 
they provide a wide range of imaging capabilities for 
studies of the marine atmospheric boundary layer 
(MABL) and physical and biological structures and 
processes at the ocean surface, at various spatial and 
temporal scales. Consistent and regular visualization, 
co-location and overlay of these heterogeneous datasets 
in a simple, fast and convenient way is now also 
possible thanks to the free and open online visualization 
portals such as (https://ovl.oceandatalab.com;  
https://seascope.oceandatalab.com). The ability to take 
optimum advantage of satellite sensor synergy 
combining active and passive microwaves, optical and 
infrared sensing jointly with in-situ observations for 
investigation of mesoscale to sub-mesoscale upper 
ocean currents is therefore highly feasible as indicated 
in Figure 1.  
 

 
 
A common challenge in using satellite sensors for 
retrievals of upper ocean currents is lack of quantitative  
understanding of near-surface ocean processes and their 
interactions with the atmospheric boundary layer. 
Direct in-situ observations of the exchanges between 
the ocean and atmosphere are rarely made as they are 
difficult and costly. Yet, air-sea interaction is strongly 
connected to weather development, storm intensity and 
storm track pathways as well as the exchanges of 
carbon, water and energy that are of key importance for 
the climate of the Earth system (see Figure 2). 
Evaporation, for instance, is a major driver of changes 
in regional rainfall patterns and affect both storm tracks 
and hurricane development. Variability in the heating 
through the ocean surface combined with changes in 
wind-driven ocean circulations moreover drives annual 
climate variations, such as El Niño/Southern Oscillation 
and affect regional sea level variability and long-term 
sea level rise. 
 

 
Figure 1. Example of satellite sensor synergy for upper ocean current monitoring based on the Sentinel-1,-2,-3 combinations of 

infrared (IR) and microwave radiometer (PMW); imaging spectrometer; radar altimeter (RA); SAR-based surface roughness and 
range Doppler velocity; scatterometer based surface roughness and wind field; and Visible-derived sun-glint. 



 

 
 

Figure 2. Schematic illustration of ocean-atmosphere exchanges in the presence of warm and cold eddies versus reference 
background (left) and local and non-local multi-scale interactions (right). (Courtesy Paco Lopez-Dekker). 

 
As suggested in Figure 2 (right) the motion of the ocean 
surface is intrinsically entwined with the atmosphere 
through air-sea interactions across a large domain of 
spatial and temporal scales. However, as we lack proper 
knowledge of the satellite-based retrieval accuracy, we 
are limited in quantifying how the uncertainty in the 
estimation of one quantity may propagate to other 
quantities and processes.  
 
In this proceeding paper the importance of synergetic 
combination of multi-modal atmosphere-ocean EO 
sensor observations, theoretical dynamical frameworks, 
machine-learning techniques and numerical simulations 
will be highlighted. The strength in sensor synergy is 
presented and evidenced in Section 2 followed by 
presentation of distinct gaps and limitations in Section 
3. Section 4 then closes the paper with an outlook 
including account of future approved satellite missions. 
Note that more details on sensor synergy for sea ice 
research and application development are addressed in 
Korosov et al., (this issue). 
 
2. Strength of Sensor Synergy 
During the last decades the advances in free and open 
access to near real time satellite data have greatly 
improved our ability to apply sensor synergy for studies 
of the MABL, air sea interaction, upper ocean dynamics 
and lower-level marine biogeochemical conditions (see 
for instance Johannessen et al., (2005), Kudryavtsev et 
al., (2012). In addition, we have seen significant 
development in visualization and multi-sensor co-
location capabilities (https://ovl.oceandatalab.com; 
https://narval.nersc.no). In particular, this have been 
evidenced for upper ocean mesoscale dynamics in 
intense current regimes such as the Agulhas Current, the 
Gulf Stream and other regions including the western 
Mediterranean Sea, the Lofoten Basin within the 
Norwegian Sea, and the coastal area of the California 
Current.  
 
However, the expressions of these dynamic features are 
often challenging to fully interpret and quantify in the 
satellite data. As such, the systematic use of satellite 

sensor synergy often strengthens the temporal coverage 
and shortcuts detection limitations by individual sensors 
to advance the interpretation. Moreover, although in-
situ data are sparse at mesoscale coverage they offer 
high temporal sampling within the water column that 
importantly complement satellite-based remote sensing 
observations. Jointly with numerical model fields a 
multi-modal approach has demonstrated advances in 
discovery, understanding and monitoring of mesoscale 
to sub-mesoscale surface signatures and their 
connection to upper ocean processes (e.g. Klein et al., 
2009). Other evidence, for instance, are tailored to: 
• Wind-current and wave-current interactions 

retrieved from Sentinel-1 combined with Sentinel-2 
and Sentinel-3. The wind stress drives the upper 
ocean circulation by means of an interplay with the 
vertical turbulent friction and the Coriolis force, 
generating horizontal wind drift currents which 
spiral and decay with depth (e.g. Bressan and 
Constantin (2019); Chapron et al (2018); Bourassa, 
M. A. (2018)). In addition, detailed wave 
propagation analysis helps reveal spatial variations 
of the directional wave spectra, directly linked to 
the ocean surface current variations as 
demonstrated by jointly combining Sentinel-3, 
Sentinel-1 and Sentinel-2  with the CFOSAT 
mission and the new SWOT mission 
(https://en.wikipedia.org/wiki/Surface_Water_and
_Ocean_Topography).  

• Novel colocation of SWOT sea surface height and 
Sentinel-1 range Doppler velocity (see Figure 3) 
revealing the ability to examine the spatial co-
variability of the mesoscale sea surface height 
structures and the range directed surface velocities 
as indicated by the presence of the cyclonic and 
anticyclonic eddies. 

• Linking 2D surface velocity structures to 3D upper 
ocean dynamics (Beron-Vera et al., 2019) using 
collocated satellite and in-situ data, jointly with 
model simulations (Le Guillou et al., 2024) with 
whereby for instance surface drifter data and Argo 
profiling floats ensure quantitative estimates of the 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Collocated SWOT sea surface height and Sentinel-1 range Doppler velocity in the Lofoten Basin  
acquired on 19 April 2023. White circles mark presence of cyclonic and anticyclonic eddies. Colour scale marks  

Sentinel-1Doppler shift (Hz) and SWOT SSH (m) 
 

 
 

Figure 4. Global distribution of extracted roll wavelengths from the most energetic peak of the identified 
WV SAR images. Colour donates the average in 5 by 5 grid boxes. (Courtesy of C. Wang.)

total surface current, upper layer water mass 
properties and mixed layer depth.  

 
• Thanks to the massive number of Sentinel-1 SAR 

wave mode (~20 * 20 km) acquisitions Wang et. al 
(2019a) developed a machine learning 
(convolutional neural network) approach to 
produce a novel dataset in support to MABL studies 
over the world's ocean as demonstrated in Figure 4 
(Wang et. al (2019b)). These coherent boundary 
layer wind driven roll structures evidence air-sea 
interactions that is also of relevance in the context 
of both local weather development, exchanges of 
momentum, heat and carbon and thus global climate 
change. 

 
Gaps and Limitations 

Instantaneous ocean surface observation from satellite 
sensor synergy, at synoptic scale O (100 km) and 
resolution of 100 m to 10 km, reveal a mixture of 
oceanic and atmospheric features and processes, e.g. 
ocean surface waves, internal waves, vector wind, wind 
streaks, hurricanes, polar lows, filaments, upwelling, 
meanders, fronts, spiral eddies, 
convergence/divergence, and biogenic, surfactants. 
These features and underlying processes are expressed 
due to a broad range of imaging mechanisms, that 
unfortunately are rarely collocated and retrieved from in 
situ ocean observations.  It is therefore challenging to 
derive quantitative insight and specify uncertainty 
levels on how these processes and features influence the 
interactive pathways between the MABL and the upper 
ocean. This is illustrated in Figure 5, including how they 
impact the carbon, heat and momentum exchanges, the 



3D motions in the upper ocean and in the MABL, the 
physical-biological interactions in the upper ocean, and 
the structures and concentrations of floating material.  
 

 
 

       
 

Figure 5. (upper) Schematic illustration of the time-space 
scales of dominant ocean-atmosphere phenomena and 

interactive processes, including a range of vertical scales 
where these processes occur. (lower) Indications of the 
multiple pathways of atmosphere-ocean interactions.  

 
Regular and systematic comparison of model fields and 
satellite-based surface 2D expressions of mesoscale to 
sub-mesoscale features are also yet to become routine. 
The ocean surface layer is usually well mixed and 
mediates the transfers between the atmosphere and the 
deeper ocean. This can be exemplified with the 
expression shown in Figure 6 connected with model-
based mixed layer depth estimations for a region in the 
Northeast Atlantic. The snapshot image depicts how the 
depth of this mixed layer varies from very shallow (~10 
m) mixed layers (light yellow) to several hundred 
(purple) metres at horizontal scales from a few km to 
100 km. Such fields yield promising capabilities to 
compare to multi-sensor satellite-based mesoscale 2D 
surface feature expressions. 
 
The state-of-the-art of atmospheric Large Eddy 
Simulation (LES) models that resolve the most 

energetic 3D boundary layer turbulence cannot yet 
explicitly simulate capillary waves and their excitation 
by the atmospheric turbulent eddies near the surface. 
But LES models are presently undergoing rapid 
development and expansion of meteorological and 
physical capabilities (Maronga et al., 2020; Kim et al., 
2023). In particular, their ability to explicitly resolve 
small-scale turbulent dynamics has improved with 
implementation of internal multi-level nesting 
capabilities (Hellsten et al., 2021; Lin et al., 2021).  
 
Marine surfactants, an indicator of upper ocean 
biological activity, are observed by multiple radar 
sensors and in sun glint at low winds and they also form 
within spiral eddies and internal waves. The sea surface 
microlayer has been shown to have importance for CO2 
and air-sea gas exchange (Mustaffa et al., 2020). Recent 
studies have shown the value of SAR for the detection 
of floating algae including Sargassum (Qi et al., 2022) 
and kelp (Jones et al., 2024) through changes in surface 
roughness, indicating that the synergetic observations of 
SAR can extend the observational time series of the 
marine ecosystem established by optical sensors (Qi et 
al., 2020). Moreover, surfactants that have been 
considered to be primarily observed in coastal regions 
by SAR are now also detected in the SAR-based wave 
mode products throughout the world ocean’s (Wang et 
al., 2019b). This suggests that the radar detection of 
surfactants may have an unexpected role to play in 
observing marine ecosystems on a global scale. So is 
their potential influence on air-sea interaction and 
uptake of CO2.  
 
Outlook  
As demonstrated above systematic satellite sensor 
synergy in combination with high-resolution numerical 
models including dynamical joint-reconstructions of sea 
surface height and temperature fields from multi-sensor 
satellite observations clearly strengthen multi-variable 
Earth system process studies, use of ML methods and 
design of digital twin components as indicated in Table 
1.  
 
High-resolution, collocated and simultaneous estimates 
of the SSH and the SST are highly important, but yields 
no direct ability to retrieve accurate estimates of the 
mixed layer depth. On the other hand, improved 
quantitative interpretation and classification of the 
abundant and rich manifestations of the mesoscale and 
sub-mesoscale upper ocean dynamic features (e.g. 
converging/diverging frontal boundaries, eddies, IWs, 
upwelling, etc.) is now becoming feasible following a 
dynamical framework, such as VarDyn (Le Guillou et 
al., 2024), which combines minimal physically-based 
constraints with a variational scheme to enhance the 
mapping capabilities of upper ocean dynamics. By 
synthesizing multi-modal satellite observations, 
VarDyn aims at improving the accuracy of SSH and 
SST maps in comparison to operational products, both 
in terms of RMSE and effective spatial resolution.  It is  



 

 
 

Figure 6. Snapshot of the Mixed Layer Depth in the Northeast Atlantic for one day in March derived from 
 the ocean model eNATL60 OGCM. Iceland is seen at the top, the Fareo Island to the right and Scotland at the  

lower right. (Courtesy of L. Brodeau and J. Le Sommer IGE, Grenoble.) 
 

Sensors & spatial 
resolution 

Key derived 
variables 

Connection to surface current Dynamic Interpretation 

Gravity & altimetry 
10-100 km 

SSH, MDT, ADT= 
MDT+SLA 

Mean and varying Surface 
geostrophic current 

SQG and Streamfunction 
estimation, eddies, VarDyn* 

Radiometer and 
spectrometer 

0.5 - 1 km (4 km, 25 km) 

SST, DSST, OC, 
DOC,  

Chlorophyll  

SST fronts, OC fronts, Sun glint  
obey geostrophic balance, 

express impact of 
convergence/divergence 

SQG and Streamfunction 
estimation, MCC, Omega equation 
for ageostrophic motion, VarDyn 

SAR  
Spectrometer  

0.1-1 km 

s and Ds 
MSS and DMSS 

Surface roughness and 
gradients related to mean square 

slope and gradient 

Near surface wind speed, TC, PL, 
Constrain Ds to DMSS using RIM, 

VarDyn 
SAR Doppler shift 

1 – 5 km 
Range surface 

velocity  
Total surface current in range 

direction  
Use of DOPRIM and CDOP, 

VarDyn 
Scatterometer 

10-25 km 
Vector wind and wind 

stress 
Surface stress, drag coefficient CMOD4 and CMOD5 

Wind stress curl express large scale 
ocean current fronts, VarDyn 

Passive microwave 
10 - 25 km 

Wind speed,  
SST, SSS 

Near surface vector wind, SST, 
SSS 

Hurricanes, fronts, eddies,  
Wake of hurricanes 

 
Table 1.  Characterization of a dynamical frameworks that account for synergies between different sensors to establish more consistent and 

better estimates of surface current dynamics and corresponding relation to for instance the stream function, vorticity and 
convergence/divergence in the upper ocean. Details of VarDyn is found here https://sciencehub.esa.int/projects/vardyn-dynamical-joint-

reconstructions-of-sea-surface-height-and-temperature-from-multi-sensor-satellite-observations/ 
 

also anticipated that by using a surface quasi-
geostrophic/quasi-geostrophic (SQG/QG) framework 
the 3D dynamics within the first 500 m below the ocean 
upper mixed layer could be very efficiently diagnosed 
using high resolution satellite-based sea surface height 
(SSH) and SST observations, jointly with in-situ data 
(Buongiorno Nardelli, 2020; Asdar et al., 2024).  
 
Guided by simulated model fields from fine-resolution 
numerical ocean models, the routine production of high-
resolution 2-dimensional multi-sensor satellite data can 
then help to uncover the 3-dimensional dynamics in the 
upper 200-500 m of the ocean in combination with use 
of ML methods (e.g. Martin et al., 2023; Manucharyan 

et al., 2020). In collaborations with the numerical 
community this would, in turn, yield regular and novel  
abilities to validate the 3D structures in ocean models. 
Such a multi-modal approach would also optimize the 
opportunities to fill spatial and temporal observation 
gaps and provide a new analyses and interpretation 
framework for studies and monitoring of mesoscale to 
sub-mesoscale upper ocean variability and dynamics. 
However, it would significantly rely on implementation 
of comprehensive field campaigns ensuring sustainable 
access to high quality in-situ data over extended 
observation periods to advance process understanding, 
model validation and development of ML/digital twins. 



In turn, more reliable estimates of the uncertainties in 
the model fields may be achieved. 
 
Moreover, by regular exploration of linkages between 
SAR observed MABL imprints jointly with sea surface 
temperature and near-surface air temperature 
measurements, it may be possible to identify the 
relationship between SAR observed MABL imprints 
and the atmospheric stratification. In combination with 
LES this might, in turn, advance the understanding of 
wave-affects in the atmospheric surface layer and help 
constrain satellite-based surface flux estimates directly.  
 
Recent improved processing and corrections of 
Sentinel-1 SAR image data are highly promising to 
secure reliable Satellite-based Doppler retrievals and 
Doppler simulations following the DOPRIM approach 
(Li et al., (2019; Moiseev et al., (2022); Kudryavtsev et 
al., (2023)). In addition, systematic benefit of the time-
lagged inter-channel Sentinel-2 acquisitions under 
cloud free conditions (e.g. Kudryavtsev et al., (2017a, 
b); Villas Boas et al., (2019; Yurovskaya et al., (2018), 
jointly with the new high resolution 2D SSH 
observations across the 100 km will further strengthen 
satellite sensor synergy. The SWOT mission, together 
with Sentinel-3, Sentinel-1 SAR and HARMONY, will 
therefore herald a new era in Doppler retrieval-based 
oceanography. Moreover, combining these missions 
with the expansion missions including CIMR (Kilic et 
al, (2018), CRISTAL, ROSE-L together with NISAR, 
S3NGT and EPS next generation high-resolution 
scatterometer (see Donlon et al., this issue) a new realm 
of satellite sensor synergy analysis and interpretation 
will emerge.  This is also expected to further advances 
the near real time use of visualization tools (e.g. 
https://ovl.oceandatalab.com;  https://narval.nersc.no)  
and also strengthen ability to collocate, overlay and 
examine the spatial and temporal evolution of larger 
scale to mesoscale surface expressions associated with 
the MABL and upper ocean dynamics and their 
interactive processes.  
 
In summary the outlook for advances in multi-modal 
synergy is clearly in line with the objectives of the 
United Nations SDGs (#13 and #14) and the Decade of 
Ocean Science for Sustainable Development (2021-
2030). It is also linking scientific analyses to 
applications within fields such as tailored to Safe Ocean 
Navigation, Renewable Marine Energy, Pollution 
Monitoring and Sustainable Fisheries. Finally, it might 
become a valuable tool for Observing System 
Simulation Experiment (OSSE) and could become an 
integral part of the design and implementation of the 
new missions as well as for planning of optimum orbit 
phasing. 
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1. INTRODUCTION 

SEASAT equipped with L-band synthetic 
aperture radar (SAR), launched in 1978 by 
NOAA, started the modern satellite-based 
ocean observation era. During the following 
decade, a significant research effort was 
dedicated to interpreting the 80-day record of 
SEASAT SAR imagery of the ocean surface. 
A multitude of atmospheric and oceanic 
phenomena were observable in SEASAR’s 
imagery because the phenomena frequently 
leave their imprint on the ocean surface. 
These included structures embedded in 
atmospheric turbulence such as rolls and 
cells, rain, biological slicks, and oceanic 
fronts. Many of these phenomena observed in 
SAR imagery are summarized in NOAA’s 
SAR Manual (Jackson and Apel, 2004). The 
European Space Agency (ESA) has been 
persistent in the collection of SAR data 
starting with the European Remote Sensing 
satellite, ERS-1, launched in 1991. This 
marked a significant milestone in 
understanding Earth's integrated system. 
Motivated by environmental concerns, it 
aimed to provide continuous global datasets, 
particularly for monitoring the oceans and the 
ocean-atmosphere interface. Equipped with a 

multi-component Active Microwave 
Instrument (AMI), including a scatterometer, 
radar altimeter, and SAR, ERS-1 was 
designed for 24-hour, all-weather global 
capability. Building on the legacy of NASA-
NOAA's SEASAT, ERS-1 capitalized on 
microwave technology's ability to penetrate 
clouds and operate independently of sunlight, 
offering valuable insights into sea surface 
heights, winds, wave heights, and structural 
ocean phenomena. The success of ERS-1 and 
its successors, ERS-2, ENVISAT, and the 
Sentinel-1 missions greatly contributed to 
ocean research, providing crucial wind and 
wave data for numerical wave models and 
propelling advancements in our 
understanding of atmosphere/ocean 
dynamics. 
 
There are many different satellites equipped 
with SARs currently in operation such as 
Advanced Land Observing Satellite 2 
(ALOS2), RADARSAT2, RADARSAT 
Constellation Mission (RCM), Sentinel-1, 
CosmoSkyMed second generation, 
TerraSAR-X/Tandem-X, Gaofen-3, Capella, 
and ICEYE. Out of all of these active SAR 
satellites, only Sentinel-1 (S-1) data is openly 
available. ESA has adopted a free-and-open 



 

data policy for S-1, which is leading to a 
major expansion of research and operational 
use of SAR data.  
 
There are four mutually exclusive imaging 
modes of S-1 and they include the 
Interferometric Wide swath (IW), Extra Wide 
swath (EW), Strip Map (SM), and Wave 
Mode (WV). Each acquisition mode has its 
different configurations of field of view and 
pixel resolution where the WV has the 
smallest footprint and highest spatial 
resolution. ESA has made strides to make the 
data as accessible as possible by making the 
data accessible through Copernicus data 
servers and the Alaska Satellite Facility and 
has developed openly available analysis tools 
like Sentinel Application Platform (SNAP). 
The large datasets of Sentinel-1, exceeding 
petabytes of raw data, demand that new 
methodologies and tools be developed to best 
exploit its rich details of the ocean and 
atmosphere. This paper summarizes new 
methodologies developed to handle such 
large datasets. All these examples of new 
methodologies were part of the May 2023 
SEASAR workshop that took place in 
Longyearbyen, Svalbard, Norway. This 
summary is not meant to be a robust literature 
review of all available new methods to 
process SAR datasets but rather a snapshot in 
time of experts from the SAR research 
community. 
 
A commonality of many of the 
methodologies presented was machine 
learning (ML) which is a broad range of 
statistical techniques used to efficiently 
extract information from multi-dimensional, 
high-resolution, and large SAR datasets. 
These studies are all based on SAR data over 
the oceans and they have applications for 
atmospheric or oceanic research. Likely 
because of its free and open data policy, data 
from the S‐1 mission was commonly used in 
the studies, and we briefly describe the 

mission. S-1 is a constellation of identical 
polar-orbiting, sun‐synchronous satellites 
with a local time of ascending node 18:00 
(Torres et al., 2012). S-1A was launched in 
April 2014 and is still operating. S-1B was 
launched in April 2016 and stopped 
collecting data in December 2021 due to a 
power issue. S-1C is expected to be launched 
in 2024. S-1 operates in the C‐band SAR with 
a center frequency of 5.405 GHz or 
wavelength of 5.5 cm. S-1 has a 12-day 
repeat cycle, flies with an altitude of 690 km, 
has an inclination of 98.2°, and a repeat 
period of 98.7 minutes. When both S-1A and 
S-1B were in operation they were 180° out of 
phase equating to a 6-day repeat cycle. The 
following seven studies utilize the S-1 
mission by developing new methods to 
extract new information, remove noise, or 
automate workflows. The paper is organized 
as follows. The SEASAR 2023 methodology 
contributions are summarized in section 2 by 
describing their unique challenges, methods, 
and representative results. A summary and 
outlook are provided in section 3. 

2. RESULTS 
The following describes the various 
contributions to the methodology theme at 
the 2023 SEASAR workshop. There are two 
commonalities of all works. The first is the 
use of the S-1 acquisitions. The second is the 
use of statistical techniques often including 
machine learning (ML). The use of ML is 
often motivated by the reduction of 
computational resources, image recognition 
capabilities, or automated workflows that can 
readily be implemented to process large 
datasets. Since S-1 is used in all 
methodologies presented here, we summarize 
the update from Hajduch et al., (2023) 
regarding the operational S-1A satellite in 
terms of the instrument performance, 
radiometric accuracy, and level 1 and level 2 
products. A key aspect of the S-1 program is 
the constant provision of quality data, which 



 

requires long-term engagement to carefully 
monitor, preserve, and improve the system. 
 
S-1A Instrument update 

● The S-1A antenna has been stable 
throughout 2022 without product 
quality degradation. 

● The instrument noise level is stable. 
● The September 2022 collision 

avoidance maneuver caused an 
increase in the interferometric 
baseline and burst synchronization 
error. 

● Changes in DC of 30 Hz are being 
continuously monitored but it does 
not appear to impacting the products. 

S-1A Radiometric accuracy update 
● IW calibration at the calibration site 

in Germany shows the overall mean 
and standard deviation for the 
absolute calibration factor is -0.08 dB 
± 0.24 dB for both VV and HH 
polarizations. 

● An absolute radiometric accuracy for 
the IW mode is 0.322 dB. 

● An absolute calibration accuracy of –
0.23 dB with a standard deviation of 
0.20 dB was determined using corner 
reflectors over Australia. 

S-1A Level-1 algorithm update 
● Correction of the misalignment 

between the elevation antenna pattern 
and the annotated thermal noise 
vector. 

● Reduction in the number of false 
positives in radio frequency 
interference time-domain  detection. 

● Reduction in the inconsistencies of 
the radio frequency interference pre-
screening 

S-1A Level-2 algorithm update 
● Implementation of a new algorithm 

for TotalHs computation of Quach et 
al., (2022). 

● Review of the oswQualityFlag 
estimation is based on a machine 
learning algorithm. 

● Recalling the radial velocity from the 
normalized radar cross-section is 
updated. 

● Wind inversion provided is now 
provided on the IceMask. 

 

2.1 Using Ocean Surface Imagery to 
Estimate Atmospheric Boundary Layer 
Stratification 
Justin E. Stopa, Ralph Foster, Doug 
Vandemark, Chen Wang, Yannik Glaser, 
Peter Sadowski, Alexis Mouche, Bertrand 
Chapron 
Over the ocean, S-1 acquisitions are wave 
mode (WV) and S-1 acquires very high 
resolution (5 m) small (20 km) images 
approximately every 100 km. It has been 
established that SAR captures information 
about ocean swell and the WV was originally 
designed to capture ocean gravity waves at 
the appropriate scales. However, WV has 
opened up new research opportunities to 
study the marine atmospheric boundary layer 
(MABL) because its high spatial resolution 
can resolve a wide range of MABL turbulent 
eddies and its 20 km field of view is large 
enough to capture many realizations of 
MABL-scale eddies. The two S-1 satellites, 
A and B collect ~65,000 WV images every 
month resulting in more than 700TB of level-
1 imagery. ML models were developed using 
convolutional neural networks (CNN) to 
detect oceanic or atmospheric phenomena 
that leave their imprint on the ocean surface 
(Wang et al., 2019). The method is used to 
sort millions of S-1 images into basic MABL 
state categories: wind streaks (WS), micro-
scale convection (MC), and lack of any 
atmospheric signature with scales larger than 
1000 m (negligible atmospheric variability 
~NV). ERA5 atmospheric surface analyses 
have been time-space interpolated to each 
WV image providing consistent estimates of 



 

the air-sea stratification through a bulk 
Richardson number (Ri). This systematic and 
global analysis of millions of SAR images 
shows that image textures are well correlated 
with the Richardson number and define 
distinct unstable, near-neutral, and stable 
stratification regimes as shown in Figure 1. 
That is, the different stratification regimes 
result in characteristic MABL mean states in 
which particular classes of coherent 
structures form and induce identifiable sea-
surface roughness patterns. The Richardson 
number is one of the key parameters 
controlling the bifurcation between the 
different turbulent states. The relationships 
between SAR-observed coherent structures 
and MABL state through Ri are robust and 

hold in overall averages, at seasonal/regional 
scales, and MABL-process scales.  
 
Figure 1: (a) PDFs of MABL Ri estimated 
from ERA5 for cells (unstable), streaks (near 
stable), and negligible atmospheric 
variability (stable) detection from SAR. The 
shaded gray PDF denotes the entire WV2 
population. Representative SAR images for 
(b) unstable Ri = −0.032, U10N = 5.3 ms−1, 
ΔTv = −2.81°, (c) near-neutral Ri = −0.006, 
U10N=9.8 ms−1, ΔTv = −1.74°, and (d) 
stable Ri =AA 0.005, U10N=7.6 ms−1, ΔTv 
= 0.84° MABL states. The white dashed 
arrow points north and the red solid arrow is 
the ERA5 wind direction. 
 
 



 

2.2 Using SAR Imagery to Diagnose 
Tropical Cyclone Boundary Layer Mean 
State 
Ralph Foster, Alexis Mouch, Bertrand 
Chapron 
Tropical cyclones (TC) form and intensify 
over the ocean and are quite compact storms, 
so high-resolution observations in remote 
locations are a necessity.  A single wide 
swath SAR image can capture most of a TC’s 
“inner core”. The Satellite Hurricane  
Observation  Campaign  (SHOC) was 
established in 2016 and its goal is focused on 
collecting high-resolution SAR imagery in 
tropical cyclones with the S-1, RadarSAT2 
(RSAT2) and RadarSAT Constellation 
(RCM) missions. S-1, RADARSAT2, and 
RCM can acquire simultaneous imagery in 
both co-pol (VV or HH) and cross-pol (VH). 
The cross-polarization acquisitions (VH) do 
not saturate at high wind speeds like VV 
normalized radar cross-sections. This offers 
the opportunity to estimate accurate wind 
speeds in tropical cyclones ( 33 to 80 m s-1).  
The high winds force the tropical cyclone 
boundary layer (TCBL) to a state of near-
neutral stratification even though the surface 
enthalpy fluxes can be enormous; the upper 
TCBL can even be weakly stably stratified. 
The consequence of the near-neutral 
stratification is that the TCBL is essentially 
the paradigmatic boundary layer for the 
generation of turbulent coherent structures in 
the form of roll vortices. TCBL roll 
orientation is highly sensitive to the vertical 
shear of the mean horizontal wind profiles. 
The rich dataset collected by SAR through 
SHOC and the routine observations of roll 
orientation in the imagery offer an 
opportunity to explore the atmospheric 
dynamics within tropical cyclones. Three 
different tools were used to exploit the SHOC 
archive. The first tool is a similarity boundary 
value model for the mean wind profiles in the 
TCBL. The lower boundary conditions are 
provided by the SAR surface wind vector 

field. The second tool provides the upper 
boundary conditions. It uses a simplified 
version of the nonlinear similarity model to 
estimate the pressure gradient field at the top 
of the boundary layer, from which we can 
directly calculate the sea-level pressure 
(SLP) pattern and consequently the gradient 
wind vectors representative of the forcing 
wind at the top of the TCBL. Ordinary least 
squares is used to calculate the pressure 
surface from the pressure gradient vectors. If 
one or more pressure observations are 
available, the SLP pattern can be converted to 
SLP. 
 
The missing information for the similarity 
model is the turbulent eddy viscosity profile 
in the TCBL, which we infer indirectly from 
the orientation of the TCBL rolls extracted 
from the SAR image. TCBL roll orientation 
is mainly determined by the mean shear 
profiles, which in turn is sensitive to the eddy 
viscosity profile. The third tool calculates the 
roll orientation for trial eddy viscosity 
profiles that are variations of standard 
numerical model parameterizations. A 
consistent solution has a minimum RMS 
between measured and calculated roll 
orientations. Example results for Hurricane 
Fiona (2022) are shown in Figure 2. Fiona is 
a very challenging case because it is a very 
small Cat-2 storm close to land.  
 
 
Figure 2 (below): (a) Sentinel-1 backscatter 
image of Hurricane Fiona (19 September 
2022) with the P-3 flight tracks adjusted to 
the overpass time. (b) SAR-derived SLP with 
TCBl roll orientations (gray). (c) N/(N-1)/2 
dropsonde pressure differences compared to 
SAR. Note that Fiona was a very compact 
storm and the storm was heavily sampled 
which leads to very high sensitivity to time-
correction of observations to the overpass 
time. 



 

 
 
2.3 MediSAR: An Exhaustive Augmented 
Dataset of Segmented Sentinel-1 SAR 
Ocean Observations of the Mediterranean 
Sea and the Black Sea Regions 
Aurélien Colin, Pierre Tandeo, Romain 
Husson, Ronan Fablet, Charles Peureux 

Wide swath S-1 images are routinely 
collected over Europe. This dataset is high 
resolution and rich with information about 
ocean and atmospheric phenomena which 
leave their imprint within the SRA 
backscatter. Due to the high resolution and 
large footprint of the wide swath SAR 
imagery, a considerable amount of 
computational effort from both CPUs and 
GPUs is needed to process the S-1 IW archive 
composed of 102,504 images which typically 
cover 160x200 km. The work uses the hand-
tagged dataset of Wang et al., (2019) to train 
deep-learning models to detect various ocean 
and atmospheric phenomena in the S-1 IW 
database. The effort 
exhaustively includes all SAR 
images between 2014-2022 
and covers the Mediterranean 
and Black Seas. The 
methodology effectively 
utilizes high-resolution SAR 
textures to provide 
geophysical information about 
biological slicks, wind speed, 
rainfall, and atmospheric 
convective processes. As an 

example, Figure 3 shows the biological slick 
detection probability during the summer 
(June-July-August~JJA) and winter 
(December-January-February~DJF) in the 
Alboran Sea. The increased biological 
activity during the summer is visible. The 
distribution of the slicks also follows the 
Western Alboran Gyres, highlighting the 
capacity for biological slicks to provide 
information on currents. Future work will 
evaluate the ML models relative to other 
satellite technologies such as the Sentinel-
3/OLCI and MSB/Seviri. The dataset is 
called MediSAR and its goal is to share SAR 
observations for the study of metocean 
phenomena more readily.  
 
Figure 3: Biological slick detection 
probability (restricted to points with wind 
speed between 6.5 and 12 m/s) during 
summer (left) and winter (right) in the 
Alboran Sea between 2015 and 2022. 

 



 

 

2.4 Machine learning for evaluating trends 
in the drivers of variability in Arctic sea-ice 
dynamics 
Lauren Alexandra Hoffman, Matt R Mazloff, 
Sarah T Gille, Donata Giglio, Cecilia M Bitz, 
Patrick Heimbach 

Arctic sea ice simulations are complex due to 
various factors, leading to high 
computational costs and model uncertainties. 
Classical numerical models need help to 
accurately represent sea-ice motion due to the 
complexity of simulating multi-phase, multi-
physics problems. Machine learning (ML) 
offers a promising approach by serving as a 
surrogate for the dynamical component of sea 
ice, potentially enhancing computational 
efficiency and revealing emergent behaviors. 
ML models are developed using sea-ice 
velocity, ice concentration, and wind velocity 
from satellite and reanalysis data sources. 
Hoffman et al., (2023) developed these ML 

models and show the viability in predicting 
sea-ice motion, achieving a correlation of up 
to 0.8 with observed data. Efforts were 
extended to use explainable ML (XML) 
techniques and find that wind velocity is a 
key predictor of ice motion in the central 
Arctic, aligning with established statistical 
relationships. Example heat maps show the 
relevance of each of the inputs to an ML 
model to predict sea ice motion in Figure 4. 
Results from the XML method known as 
layerwise relevance propagation (LRP) 
applied to a CNN show that wind velocity is 
the most important predictor of ice motion for 
regions in the central Arctic (red in Figure 

4d). It found that the physics-based and ML 
models have the largest uncertainties in the 
coastal regions where ice stress is significant. 
Ongoing work is utilizing SAR and XML 
methods to understand the role of linear 
kinematic features in ice dynamics and to 
improve the predictability of sea ice motions 
in coastal regions. 
 
Figure 4: (a–c) Heat maps show the 
relevance of each of the inputs to an ML 
model for making predictions of sea-ice 
motion. These relevance heat maps are from 
an explainable machine learning (XML) 
method known as layerwise relevance 
propagation (LRP) applied to a CNN trained 
to make one-day predictions of sea-ice 
motion from inputs of wind velocity (ua) in 
panel (a), ice velocity (ui) in panel (b), and 
ice concentration (ci) in panel (c). (d) Map 
showing which input is the most important 
predictor of sea-ice motion for the ML model 
at each location in the Arctic.  

 

2.5 Sentinel-1 Extra Wide Thermal Noise 
Removal Using a Deep Learning Model 
Roghayeh Shamshiri, Egil Eide, Fazel 
Rangriz Rostami, Knut Vilhelm Høyland 
The Sentinel-1 (S1) ground range detected 
(GRD) extra-wide (EW) swath data, 
particularly in the cross-polarization channel 
is strongly affected by thermal noise. This 
particular type of noise not only reduces the 
data interpretability and spatial quality but 
also creates challenges of a consistent 
backscatter time series. Even though GRD 
images undergo denoising using calibrated 



 

noise vectors provided by the ESA, residual 
noises persist in time series applications on 
the Google Earth Engine platform. 
Previously developed methods enhance the 
image quality; but, these methods are not 
feasible in cloud computing using the Google 
Earth Engine. Therefore, a novel method 
using deep learning through a U-Net 
Convolutional Neural Network (CNN) 
architecture was developed to reduce noise in 
S-1 wide swath imagery automatically. There 
are two further constraints: the results should 
be competitive with those produced by 
existing conventional methods and the 
method can be implemented on the Google 
Earth Engine. Figure 5 shows the noisy, 
predicted, and clean images for example 
GRD S-1 acquisition. The CNN has 
significantly removed the stripes and the 
backscatter is continuous across the swath. 
The results demonstrate the effectiveness of 
the CNN in reducing the noises from the EW 
HV-polarized S1 images and the method can 
effectively be implemented on Google Earth 
Engine. 
 
Figure 5: Model test result, (a) the noisy, (b) 
predicted using our model, and (c) clean 
image. 

2.6 Monitoring coastal erosion and 
morphodynamics in intertidal areas 
Martin Gade, Sebastian Peters, and Simon 
Schäfers 
The Wadden Sea on the continental North 
Sea coast is the World’s largest coherent 
intertidal area and extends over an area of 
about 4700 km2, extending from the Dutch 
coast in the West to the Danish coast in the 
north. Intertidal areas are crucial for 
ecosystems and protect infrastructure from 
damaging storms. Due to the large area, 
remote sensing methods are best suited to 
monitor coastal changes related to land type 
(sediment, sea grass, etc.) or morphological 
changes (coastline change). Small-scale 
changes (<1 km) need to be resolved and 
SAR is the ideal sensor with its high 
resolution. A large number of SAR images 
were acquired over the German part of the 
Wadden Sea by the L-, C-, and X-band SARs 
aboard ALOS-2, Radarsat-2 and Sentinel-1, 
and TerraSAR-X, respectively. Using this 
wide range of multi-frequency / 
multipolarization SAR data it is determined 
which combinations of radar band and 
polarization are best suited for the 
classification of different Wadden Sea 
surface types, including sandy and muddy 
sediments, seagrass meadows, and bivalve 
beds. A neural network was built for the 
automated detection of waterlines on 



 

Sentinel-1A/B SAR-C imagery. The neural 
network is capable of segregating water from 
exposed intertidal flats at high spatial 
resolution (Figure 6). The neural network is 
designed as an image-to-image network and 
uses SAR images and an ordinary land/water 
mask as input (left and middle panels of 
Figure 6, respectively). The neural network 
simplified the SAR image analysis 
significantly, as only minor post-processing 
of the obtained results is required.  

 
Figure 6. Automated classification of 
exposed intertidal flats by a neural network. 
Left: part of a Sentinel-1A SAR-C image of 
the German Wadden Sea acquired on 19 May 
2020. Middle: manually generated 
land/water mask used as additional input; 
yellow: land; blue: open sea; green: potential 
intertidal flats. Right: resulting prediction of 
the neural network (classification). 
 
 
 
 
 
 

2.7 Ship Wake Detectability 
Björn Tings, Andrey Pleskachevsky, Stefan 
Wiehle, Sven Jacobsen 

 
Ship wakes are produced by the interaction of 
the ship’s hull with the ocean water and result 
from multiple interacting wave systems 
closely beneath and on the ocean surface. The 
ship wake signatures in SAR imagery consist 
of four components including Kelvin wake 

arms, V-narrow wake arms, and near-field 
and far-field turbulent components of the 
wake. The detectability of wakes in SAR 
imagery is influenced by ship properties, 
environmental conditions, and SAR 
acquisition properties (frequency and 
incidence angle). Machine learning through 
support vector machines was used to 
understand the detectability of individual 
wake components. This approach allows 
various influencing parameters to be isolated 
for the four different wake attributes. 
TerraSAR-X (2881), CosmoSkyMed (94), 
Sentinel-1 (618), and RADARSAT-2 (407) 
in C-band and X-band were used in this 
study. Ship information from the Automatic 
Identification System (AIS) was used as a 
reference. The results are provided in Table 
1. 
 



 

Table 1: Summary of detectability for the four wake components. Parameters with identical 
influence are marked by grey color. 
 
Influencing 
Parameter 

Summary of detectability of the four wake components 
wake component  detectability: “↑”: better,  “≈ “: hardly  influenced  

Near-hull turbulence Turbulent wakes Kelvin wake arms V-narrow wakes 

Vessel speed ↑ for faster moving 
vessels 

↑ for faster moving 
vessels 

↑ for faster moving 
vessels 

↑ for faster moving 
vessels 

Vessel length ↑ for larger vessels ↑ for larger vessels ↑ for larger vessels ↑ for larger vessels 
Vessel moving 
direction 

↑ for vessels moving 
parallel to range  

≈ by vessels’ moving 
direction 

↑ for vessels moving 
parallel to azimuth  

↑ for vessels moving 
parallel to azimuth 

Incidence angle ↑ for larger incidence 
angles, when ship 
speeds are at least 
moderate 

↑ for lower incidence 
angles 
  

↑ for lower incidence 
angles 

↑ for lower incidence 
angles 

Local wind speed ↑ for lower wind 
speeds 

↑ for lower wind 
speeds 

↑ for lower wind 
speeds 

↑ for lower wind 
speeds 

Sea state - wave height ≈ by wave heights ≈ by wave heights ≈ by wave heights ≈ by wave heights 
Sea state - wavelength ↑ for longer 

wavelengths, when 
ship speeds are at least 
moderate 

↑ for shorter 
wavelengths 

↑ for shorter 
wavelengths 

↑ for longer 
wavelengths 

Sea state - wave 
propagation direction 

↑ for wave directions 
parallel to the vessel’s 
movement  

↑ for wave directions 
parallel to the vessel’s 
movement  

↑ for wave directions 
parallel to the vessel’s 
movement  

≈ by wave propagation 
directions 

Local wind direction ≈ by wind direction ↑ for wave directions 
orthogonal to the 
vessel’s movement 

≈ by wind direction ↑ for wave directions 
orthogonal to the 
vessel’s movement 

SAR slant ranges ≈ by slant ranges ≈ by slant ranges ↑ for shorter slant 
ranges 

≈ by slant ranges 

SAR radar frequency ≈ by radar frequency 
  

≈ by radar frequency ≈ by radar frequency ↑ for X-band 

 
 



 

3. SUMMARY AND OUTLOOK 
3.1 Summary 
The open-data policy of ESA has allowed 
SAR data to be more easily used in a broad 
range of applications. While the examples 
here are not exhaustive, the seven works 
show how surface textures from SAR can be 
exploited for study of atmospheric 
phenomena (Stopa et al., 2023; Foster et al., 
2023; Colin et al., 2023), ocean phenomena 
(Colin et al., 2023), refinement of sea ice 
motion in coastal regions (Hoffman et al., 
2023), monitoring and the detection of the 
coastline variability in intertidal regions 
(Gade et al., 2023), and the detection of ship 
waves in SAR imagery (Tings et al., 2023).  
 
For wide swath imagery, the correction of 
overlapping SAR swaths often creates 
erroneous data issues and ML can be used to 
effectively correct the swaths and is 
comparable to existing methods (Shamshiri 
et al., 2023). This broad range of applications 
requires different ML approaches to be 
developed and implemented. A commonality 
of using ML is that the methods are often 
easily automated and require fewer 
computational resources than other methods. 
For example, Colin et al., (2023) and Stopa et 
al., (2023) use ML for image detection from 
convolutional neural networks through deep 
learning which effectively extracts 
information about the ocean surface textures. 
Image detection through ML allows the large 
S-1 archive that contains sub-mesoscale 
features across basin scales through the WV 
mode (now exceeding 1 Pb) and the >100,000 
IW (400 Tb ~4 Gb per single polarization 
images) in the Mediterranean and Black Seas 
to be utilized. ML models are also being used 
to determine important input parameters as in 
the case of Hoffman et al., (2023) for 
predicting sea ice motion or Tings et al., 
(2023) for determining the radar settings in 
influencing the detectability of ship wakes.  

3.2 Outlook 
Machine learning is a rapidly changing field 
and we expect that these new advancements 
in the methods will be further refined to meet 
the needs of remote sensing specialists using 
high-resolution imagery. ESA is dedicated to 
providing SAR data until at least 2030 with 
Sentinel-1 with satellites C and D yet to be 
launched. NASA’s NiSAR mission will be 
launched in 2024 and like ESA they will have 
an open data policy. We strongly attribute the 
wider use of SAR data for research and 
applications to the open data policy and ease 
of data access.  
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ABSTRACT 

SAR is a vital source of information for monitoring the 
coastal oceans, particularly for oil spill detection and 
identifying and tracking vessels.  Major advances in 
understanding how SAR can be used to detect, track, and 
characterize slicks has resulted from observations with 
low noise instruments, but determining thickness and 
discriminating mineral oil from other radar-dark 
phenomena remain challenges.  Remote sensing 
information is playing a crucial role in enhancing 
maritime situational awareness, addressing detection of 
illegal trafficking at sea and illegal fishing, and 
monitoring integrity and operations of surface/sub-
surface critical infrastructures. The availability of free 
and low-cost SAR data, development of new processing 
techniques, and deep learning methods applied to object 
identification in SAR imagery supports continued 
advancement.  This paper summarizes advancements in 
the ~20 years since SeaSAR was last held on Svalbard, 
remaining major gaps in knowledge and capability, and 
activities to continue advancement in the coming 
decades.  
 
1. INTRODUCTION 

The progress made since the last SeaSAR meeting on 
Svalbard, ESA’s 2003 Workshop on Coastal and Marine 
Applications of SAR, was discussed at the May 2023 
SeaSAR meeting with the goal of identifying knowledge 
gaps and actions that can be taken in the next 10 years to 
advance studies of the ocean based on Synthetic Aperture 
Radar (SAR), considering both fundamental and applied 
science.  The sessions on applications were separated into 
three topics, two of which covered generally related 
applications and a third that covered other notable marine 
and coastal ocean applications: 
 
1. Maritime Security / Navigation / Ship Identification 
2. Marine Mineral Oil Slicks / Spills 
3. Others (Macroalgae/algal blooms, oil in arctic ice, 

iceberg detection, biogenic surfactants) 

There are numerous other topics that could have been 
included as SeaSAR applications and some of those were 
relegated to other sessions: an abstract on coastal erosion 
in the Methodology and Techniques session; wave-
driven flooding, submergence, and erosion necessarily 
related to wave retrieval; iceberg detection and impact to 
shipping closely related to sea ice detection.  In some 
cases, the topics were not discussed at the meeting, e.g. 
the impact of man-made pollution on marine water 
quality and SAR-based measurements of coastal 
bathymetry.  A variety of ocean applications were 
covered by submitted abstracts (included in this volume), 
all addressing the first two topics. 

The sections in this paper are separated by the three 
topics listed above, each covering the state-of-the-art in 
each field, knowledge gaps and critical processes that are 
still not well understood, and studies and measurements 
through airborne and space missions or field campaigns 
that can lead to the next level of advancements. The 
references cited cannot cover the vast amount of research 
done in the last 15–20 years, so those given here are 
selected as exemplars; the references therein and their 
citing articles serve to document the volume of research 
in these study areas.  

The topic-specific sections are followed by a summary 
identifying the theme-specific recommendations and 
commonalities in gap-filling activities among the 
different marine and coastal applications for which SAR 
observations provide key information.  These include 
what we identified to be the highest priorities given the 
upcoming ESA, NASA, and JAXA missions.  The 
abstracts and short papers submitted to the SeaSAR 
Applications session and provided by the coauthors are 
included in the volume and cited herein. 
 
2. MARITIME SECURITY AND NAVIGATION  

2.1 Overview 

Maritime situational awareness is related to the effective 
understanding of targets at sea that could impact 



 

 

environment, economy, safety, and security. The use of 
satellite data in maritime applications allows sea waters 
to be monitored worldwide, in a cost-effective and 
reliable manner, and, thanks to the use of SAR satellites, 
independently of the time of the day and weather 
conditions. The current baseline of higher revisit times of 
Earth Observation (EO) missions and constellations than 
previously possible provides a strong foundation for the 
development of routine applications and services 
integrating new processing techniques.   

Several techniques ranging from classical statistical ship 
detection methods to more modern Artificial Intelligence 
(AI)-based techniques are being used to perform ship 
detection from satellite imagery [Morando et al., 2023]. 
Furthermore, the correlation between positioning data 
transmitted by vessels, using AIS, LRIT, and VMS 
reporting systems, and satellite ship detections allows to 
track and retrieve information about the behaviour of 
ships.  
The main areas of development related to the operational 
exploitation of EO for maritime situational awareness 
can be identified as follows:  
• new techniques considering a more persistent 

temporal coverage thanks to the increased 
availability of data; 

• new processing techniques to improve accuracy for 
target detection, identification, characterization and 
tracking; 

• faster access to satellite acquisitions and reduction of 
latency time, focusing on tipping and cueing 
capabilities and cloud processing techniques. 

2.2 Advancements in methods - maritime security 

The 'New Space' sector's rise, alongside advancements in 
processing and computer vision, is transforming the 
space industry. This evolution opens new research 
avenues, especially in using EO data for maritime 
surveillance. Recent satellite constellations, primarily 
made of small- and nano-satellites, have enhanced global 
monitoring capabilities. These satellites are outfitted with 
standard sensors like Optical and SAR, as well as cutting-
edge ones such as AIS and Radio Frequency (RF) 
detectors. This payload diversity yields a rich mix of 
varied and complex datasets. While these diverse datasets 
present challenges in terms of data processing and fusion 
due to varying resolutions in time and space, they also 
offer actionable information more efficiently and cost-
effectively. 

Furthermore, advancements in data processing 
techniques together with increased data availability, offer 
improved object detection and tracking capabilities 
compared to traditional image processing methods. An 
example are pattern-of-life-based alerting functions 
which direct attention to specific target behaviors.  

Traditional ship detection methods typically rely on 
segmentation-based algorithms that analyze SAR image 

characteristics statistically to distinguish targets from the 
background, such as the classical Constant False Alarm 
Rate (CFAR) method. In this context, innovative 
techniques like advanced data augmentation, few-shot 
learning, transfer learning, and automated Deep Learning 
(DL) operations are being explored to provide new 
solutions for automatic vessel detection or port activity 
recognition. One of the widely adopted DL methods, 
including for ship detection is Convolutional Neural 
Networks (CNNs). DL-based ship detection often 
involves extracting patches from SAR images and using 
CNNs to determine if these patches belong to the target 
ship. The advantages of DL methods include their 
processing speed and accuracy.  

Furthermore, leveraging innovative DL-based restoration 
techniques can potentially improve the spatial resolution 
of imagery and video data, enabling new applications in 
maritime surveillance. The industrialization of these 
academic studies has the potential to enhance the value 
of low-resolution and openly available EO data for 
addressing novel applications. To fully leverage the 
increased data availability, dedicated research is focused 
on designing innovative signal processing techniques. 
These techniques aim to enhance the focus on moving 
targets in SAR imagery and derive kinematic parameters 
for vessels. The combined use of traditional satellite SAR 
and Inverse SAR (ISAR) techniques applied to SAR data 
are currently being examined to assess their impact on 
feature extraction processes and, consequently, on 
improvements in data fusion results. Differently from 
SAR, ISAR uses the motion of the target rather than the 
radar platform to generate the synthetic aperture antenna 
for radar imaging. The two-dimensional image is then 
produced by analysing received echoes based on fast time 
and Doppler frequency. The analysis in time provides the 
position of bright points along-range, while the Doppler 
analysis provides the cross-range position. The outcome 
of an ISAR system can be a one-, two-, or three-
dimensional (and possibly temporal) description of the 
target's spatial electromagnetic reflectivity distribution, 
depending on the sensor characteristics and the relative 
target-sensor motion. It is important to note that ISAR 
images of moving targets, which are processed assuming 
the radar platform is stationary and the target moving, are 
well-focused. This contrasts with standard SAR images 
of moving targets, where the moving target appears 
blurred because the data are processed as if the scene is 
stationary and only the radar platform is moving, causing 
target motion to remain uncompensated. Furthermore, 
ISAR enables to retrieve target motion parameters (such 
as speed and direction), providing invaluable information 
for characterizing the target and its activities. 

Another processing technique under evaluation involves 
the modelling and exploitation of radar micro-Doppler 
effects to determine the dynamic properties of targets, 
with further developments anticipated in this area [Chen, 
2023]. An interesting definition of the micro-Doppler 



 

 

effect is given by Victor Chen [2023]: “The micro-
Doppler signature is the intricate frequency modulation 
that is imparted on the backscatter signal by the moving 
components of a radar target.” Mechanical vibrations or 
rotations of a target can induce frequency modulation of 
radar returns, generating sidebands about the Doppler 
frequency, known as micro-Doppler effects. Modulations 
produced by rotational, vibrational, or non-uniform 
movements can be considered features of interest in the 
target signature. Therefore, the analysis of micro-
Doppler effects and the real time extraction of micro-
Doppler information is considered of relevance, in 
combination with other techniques, to improve target 
detection and classification.  

An additional research line is based on traditional 
subaperture techniques applied to SAR datasets acquired 
with new modes. New microsatellites feature an active 
phased array antenna with beam steering capabilities in 
the along and cross-track directions, that allow ScanSAR 
and TOPSAR modes to be operated. Lightweight 
platforms are more agile and exhibit more flexible 
mechanical pointing capabilities that enable very long 
dwell and staring Spotlight modes, creating new data 
products from which to derive information on moving 
targets (e.g. VideoSAR).  

SAR video is generated by focusing adjacent portions of 
the synthetic aperture, with each focused sub-aperture 
corresponding to one video frame. During the extended 
acquisition time, a continuous sequence of images is 
generated and mapped onto a consistent Cartesian grid 
while the radar platform moves towards, by, or around 
the target area. The resulting imagery exhibits a video-
like nature due to the overlapping synthetic apertures 
used for its production, allowing for output frame rates 
comparable to those of traditional video systems, hence 
VideoSAR [Palm et al., 2014; Gu & Chang, 2016; Liu et 
al., 2016; Yamaoka et al., 2016]. The key characteristic 
of VideoSAR imaging is the ability to maintain 
consistent antenna illumination on the target, regardless 
of changes in the squint angle. However certain 
theoretical and practical limitations to this capability 
exist.  To fully exploit the potential of VideoSAR, it is 
crucial to maintain the phase coherence in the imagery 
and to control the acquisition geometries. These 
measures allow the generation of secondary products 
such as coherence images or maps, which are valuable 
for change detection and other advanced analysis 
techniques.  

Another interesting capability is distributed sensing, 
provided by bistatic and multistatic spaceborne satellite 
systems. These have proven effective for interferometric 
and imaging applications. Examples come from 
companies such as Iceye and Capella whose new SAR 
constellations are enhancing the ability to explore scene 
characteristics by leveraging multiple observation angles. 
These constellations are also contributing to global and 

continuous monitoring of the planet, offering actionable 
information in a better, faster, and more cost-effective 
manner. Moreover, distributed missions such as Chinese 
LuTan-1 Mission, European Space Agency Harmony 
Mission, German Aerospace Center (DLR) TanDEM-L 
Mission, Italian Space Agency RODiO Mission, 
Netherlands Institute for Space Research (SRON) 
SwarmSAR Mission, and the distributed geosynchronous 
SAR (GEO SAR) are in the preparation or planning 
stage. Distributed spaceborne SAR systems offer 
significant advantages when compared to monostatic 
SAR platforms. They provide a shorter revisit time, 
broader imaging coverage, and a wider range of remote 
sensing applications, thanks to their system flexibility 
and inter-satellite collaboration. Furthermore, the 
combination of sensors, such as spaceborne-airborne 
bistatic SAR configurations, enhances SAR capabilities, 
providing more comprehensive information about 
scattering properties and enabling forward-looking SAR 
imaging. As a result, these distributed systems can 
effectively overcome challenges like temporal 
decorrelation and atmospheric interference, leading to 
improved performance in topography and deformation 
retrieval, moving target detection, and three-dimensional 
(3D) imaging. 

In terms of data fusion, the integration of SAR and RF 
signals for active targets offers substantial improvements 
in recognition and status characterization, even in 
complex environments with multiple targets. SAR 
sensors can also incorporate ground-based transmissions 
within their field of view into the focused image, 
supporting the mapping and location of ground-based 
transmitters operating within the SAR's frequency 
spectrum. New satellite technologies capable of detecting 
and geolocating electromagnetic signals emitted by 
vessels, such as those from L-band satellites, GSM, VHF 
maritime emitters, and X-band maritime radars, are 
already operational and in further development by 
commercial and public/private partnerships. These 
technologies are not affected by weather conditions and 
can complement traditional satellite remote sensing 
products. Commercially available RF datasets provide 
information on maritime radar pulses, aiding in the 
detection of changes in navigation equipment and 
profiling maritime radars operating in X and S bands. 
ESA-funded activities include analyzing and 
implementing data fusion algorithms to enhance the 
detection and tracking of non-cooperative targets and 
analyzing anomalous behaviors. Additionally, 
algorithms for route prediction and forecasting based on 
AI methodologies are being developed to reduce the 
uncertainty in the fusion process. 

2.3 Gaps - maritime security and navigation 

In terms of detection of targets, DL techniques applied to 
EO datasets have demonstrated unprecedented 
performance compared to conventional algorithms. 



 

 

However, current DL-based SAR ship detection still 
faces challenges, such as complex scenes and different-
sized targets, particularly in port scenarios.  The 
algorithms utilizing medium resolution, but free, SAR, 
e.g. from Sentinel-1 and soon from NISAR, have not 
been as well studied because of the focus on high 
resolution SAR. 

A remaining issue is the availability of very large training 
datasets for the DL models both for ship identification 
[Moujahid et al., 2024] and ship wake retrieval [Del Prete 
et al., 2024].  Currently, AIS positioning data is not 
transmitted by all vessels, does not adequately label the 
vessel type, is not publicly available for many areas, 
much of it being proprietary, and is not attached as 
ancillary data to SAR datasets.   There is also a notable 
deficiency in obtaining multi-temporal images with 
minimal time delays.   

Challenges remain in the quantification of the visibility 
of small structures on the ocean surface and making this 
systematic when structures that need to be identified vary 
in form, size, and material. A detector fusion approach 
was used to improve the ability  to detect small, non-
magnetic vessels, such as inflatable rubber boats used by 
refugees to cross the Mediterranean Sea. The developed 
detection capabilities for those boats are good up to a 
wave height of 2.5 meters [Lanz et al., 2024]. This 
problem extends to detecting floating debris from 
wreckage of vessels and structures in cases where slicks 
do not indicate their location.  There is also an operational 
need to identify, position, and monitor navigational 
buoys and beacons in distant or remote locations where 
persistent cloud cover precludes the use of optical 
imagery. Because of their small size, high resolution 
SARs have been investigated for this purpose [e.g. 
Kaczor et al., 2024], but more work including other 
frequency SAR is needed. Finally, the methods must be 
reliable, repeatable, and cost-effective for wide-spread 
adoption. This requires testing in a variety of locations, 
integration with ancillary information or other remote 
sensing data, quantification of accuracy and limitations, 
lower temporal resolution, and easy and low latency data 
access. Ideally, the SAR data are free or inexpensive, 
which is currently not the case with constellations such 
as COSMO-SkyMed and TerraSAR/Tandem-X. 

3. MARINE OIL SLICKS AND SPILLS 

3.1 Overview 

SAR has long been used for identifying and tracking 
mineral oil slicks on the ocean surface based upon 
contrast with the clean ocean surface, often called the 
'damping ratio' in this context [Gade et al., 1998a].  This 
works for winds speeds in the range 2–12 m/s depending 
on the instrument operating frequency and transmit 
power.  In general, the contrast decreases as the wind 
speed increases [Gade et al., 1998a,b].  Slick detection 
with SAR is challenged at low wind speeds by the lack 

of contrast because the calm surface of clean sea water 
generally has very low SAR returns also, and it is 
challenged at high wind speeds by slicks not persisting 
on the surface, but rapidly mixing into the water column 
driven predominantly by wave breaking.  Examples of 
look-alikes for mineral oil slicks are low wind areas, 
natural biogenic films, algal blooms and macroalgae (in 
some radar bands), rain cells, and grease ice.  

Some key information available through SAR remote 
sensing is needed for oil spill response and remediation, 
namely the location and extent of the slick, and 
characterization of the oil by thickness and degree of 
emulsification. Models initiated or updated with the 
information can be used to forecast the likely transport 
path of the slick, and for hindcasting to identify the 
source location of the oil for accidental or intentional 
releases. Given information about the extent and 
thickness of the surface slick and time since release, a 3-
dimensional transport and evolution model can be used 
to estimate the volume of released material, information 
required to assess environmental and economic damages.  

3.2 Advancements in methods - oil slicks and spills 

Significant progress has been made in oil spill detection, 
tracking, and characterization based on SAR data in the 
last 15 years, in no small part because of the plethora of 
SAR data that was collected with spaceborne and 
airborne sensors during the 2010 Deepwater Horizon 
spill in the Gulf of Mexico [Latini et al., 2016].  Prior to 
this, it was widely thought that SAR was not useful for 
doing more than detecting slicks [Fingas & Brown, 
2014], but since 2010 that has been shown to be incorrect 
in studies using the low noise floor airborne SARs like 
UAVSAR (L-band) [e.g. Minchew et al., 2012], FSAR 
(X-, S-, and L-band) [e.g. Quigley et al., 2023], and 
SETHI (X- and L-band) [e.g. Angelliaume et al., 2017; 
Angelliaume et al., 2018], and the low noise floor quad-
pol mode of the C-band Radarsat-2 satellite-borne SAR 
[Garcia-Pineda et al., 2020].    

During the late 2000s and early 2010s, many studies were 
undertaken to evaluate the capabilities of polarimetric 
SAR for characterizing oil slicks, i.e., determining oil 
thickness or differentiating mineral oil from various false 
positives, primarily biogenic slicks.  Many different 
polarimetric parameters were suggested (see lists in 
Skrunes et al., 2014; Espeseth et al., 2017), including but 
not limited to entropy calculated via the H/A/a 
polarimetric decomposition.  Studies with low noise 
instruments have shown that many of those studies were 
impacted by instrument noise and that polarimetric 
parameters are not necessarily the best option, for L-band 
at least [Minchew et al., 2012; Espeseth et al., 2020a].  In 
fact, studies have shown that the VV and HV damping 
ratios and the HH/VV copolarization ratio [Espeseth et 
al., 2017; Angelliaume et al., 2018] are the most sensitive 
to oil slick characteristics, including thickness.  Given 
sufficient margin above the instrument noise floor (~6 dB 



 

 

based on Minchew et al., 2012; Espeseth et al., 2020), the 
damping ratios can identify zones of thicker oil within a 
slick [Wismann et al., 1998; Gade et al., 1998b; Jones & 
Holt, 2018].  This identifies areas of relatively thicker oil, 
as opposed to measuring the thickness of the oil (Figure 
1).  

Theoretical modeling has shown that obtaining the 
absolute thickness by this method is not feasible given 
the range of values that bulk and interfacial properties can 
have, some of which change by orders of magnitude as 
the oil weathers [Jaruwatanadilok et al., 2023].  Based on 
data collected during the Deepwater Horizon spill, the 
damping ratios have also been used to relate the 
backscatter to the dielectric constant of a thick oil layer, 
hence obtaining information about emulsification by 
estimating the oil:water ratio based on the dielectric 
constant derived from a backscattering model [Minchew, 
2012; Minchew et al., 2012].  Automated ML methods 
for identifying slicks based on contrast using data from 
the operational satellite-borne imaging SARs and 
suitable for use by oil slick detection services have been 
developed [e.g. Garcia-Pineda et al., 2013; Bianchi et al., 
2020; Yang et al., 2024].  A computationally inexpensive 
algorithm applicable to SAR of any frequency and 
polarization, which is based on statistical analysis, is 
under development and test by NOAA and NASA/Jet 
Propulsion Laboratory [Jones, 2023; Holt et al., 2024; 
Jones et al., 2024].  This is also suitable for 
implementation on-board aircraft for real-time 
acquisition and processing during response. 

Another advancement has been in the use of rapid repeat 
SAR imaging to measure slick transport, including 
identifying probable locations of thicker oil [Espeseth et 
al., 2020b] and identifying oil slicks in low wind 
situations where single images cannot resolve the similar 
low backscatter features [Quigley et al., 2024].  Modeling 
of oil slick evolution and transport has advanced 
significantly [Lehr, 2021; Keramea et al., 2021], and the 
model parameters can be refined when constrained by 
SAR data from rapid repeat imaging [Jones et al., 2016; 
Röhrs et al., 2018]. 

A particular challenge under study is differentiating 
slicks in the presence of false positives.  Early work used 
spatial, contextual, and statistical features to label and 
discriminate the slicks [Brekke and Solberg, 2005], but 
machine learning / deep learning (ML/DL) methods have 
been applied for automated detection of oil spills based 
on satellite SAR imagery.  Many studies have been 
published in the last 10 years, and examples of the 
methods applied can be found in Cao et al. [2017], 
Bianchi et al. [2020], Shaban et al. [2021], Amri et al. 
[2022] and references therein.  Few of these studies are 
multi-class - most classify the scene as oil vs. not oil, 
although [De Laurentiis et al., 2020] differentiates 
mineral oil from clean ocean and biogenic slicks based 
on airborne SAR data acquired near the Louisiana coast 

in the Gulf of Mexico. Many include look-alikes in the 
'not oil' training dataset, e.g. Yang et al. [2024].   

Starting in the early 2000s, the increasing amount of 
available single- and multi-mission SAR data has been 
used for statistical analyses of spatio-temporal pollution 
densities in European marginal seas [Ferraro et al., 2006, 
2008] and, more recently, in Indonesian waters [Mohr 
and Gade, 2022]. Despite being based on relatively small 
numbers of SAR images, such studies have already 
demonstrated the necessity of routine oil pollution 
monitoring of ecologically sensitive marine 
environments using multi-mission spaceborne SAR. 

 

 
Figure 1. Relative thickness classification of mineral oil 
slicks in the Coal Oil Point seep field derived from L-
band VV-polarization data acquired by UAVSAR.  The 

inset shows the area in the white box, overlain with 
multispectral imagery collected simultaneously by 

drone from a boat. [From Holt et al., 2024] 

3.3 Gaps - marine oil slicks and spills 

There are several gaps in knowledge that remain, the 
most significant being the ability to differentiate mineral 
oil slicks from radar-dark look-alikes, e.g. low wind, 
biogenic oil, rain cells.  In the context of disaster 
response, this includes differentiating spills from natural 
seeps, a potential problem in some areas.  ML methods 
offer promise but are hampered by the lack of open-
source training datasets that include false positives, 
including those classified by type.  An issue is finding 
verified spills/slicks for those datasets.  Another 
understudied topic is the value of multifrequency SAR 
for differentiating mineral oil from false positives.   

There is a need to better identify the thicker oil within a 
slick, particularly those areas with oil thickness > 50 μm, 
the ‘actionable’ oil that is more easily removed from the 
surface [Holt et al., 2024]. Oil transport and weathering 
models should continue to be improved to forecast and 
hindcast evolution and to better estimate the release 
volume and the ecological impact from a spill. 

With ever-increasing SAR data volumes, the operational 
spill monitoring agencies and services need to improve 
automation of SAR processing to identify slicks, 
specifically algorithms to identify potential slicks quickly 



 

 

and with higher true positive and lower false positive 
rates.  Computationally inexpensive methods of oil slick 
identification and classification that work for all the 
typically used SAR bands (X, C, S, L) are needed for this 
purpose and to support on-board and near-real-time 
monitoring from aircraft.  As identified for maritime 
security, the methods must be reliable, repeatable, and 
cost-effective, and developed and tested in a variety of 
locations.  

Studies with UAVSAR have shown the capability of 
rapid repeat imaging to support response in new ways, 
and the value of the data for improved oil transport 
forecasting, but the studies have been very limited in the 
types of slicks studies and the environmental conditions 
under which the data has been collected. The capabilities 
of the new SmallSat SARs for supporting oil spill 
response has been largely unstudied, although they 
potentially offer the most frequent image repeats of all 
the satellite SARs.   
 

4. OTHER APPLICATIONS 

4.1 Overview  

The extended and routine observations from Sentinel-1 
have benefitted areas of investigations focused on marine 
application topics, including topics that have relied more 
heavily on multispectral observations such as marine 
algae. A recent overview study provided an extensive 
listing of studies that have detected macroalgae, algae 
blooms, and other water organisms using optical imagery 
(Qi et al., 2020), as optical imagery has more well-known 
detection capabilities. In this section, we briefly look at 
marine algae and some of its many forms being observed 
by SAR, studies of which have shown a recent 
proliferation in publications, including macroalgae and 
other forms of algae that generate marine slicks.  SAR 
has been used to detect algal blooms, notably in regional 
seas, which appear on SAR as dark surface slicks. One 
notable form of algae not included in the Qi et al. (2022) 
overview paper is coastal kelp (Macrocystis), which is 
attached to the bottom but is floating and spreads across 
the ocean surface. In this section, we will briefly review 
SAR studies of macroalgae, algal blooms and slicks, and 
kelp. Continuity in both SAR and fine resolution 
multispectral missions including Sentinel-2 are 
particularly beneficial for comparison and potentially for 
cross-validation of features of interest. 
 
4.2 Marine Algae  

4.2.1 Macroaglae 

In recent years, there have been extensive blooms of 
floating macroalgae including species of Ulva and 
Sargassum in global seas, often related to warming and 
an increase in nutrients, leading to hazards in coastal 
conditions by massive incursions of biomass. A study by 
Qi et al. (2022) made use of extensive collections of 

Sentinel-2 data, with previously identified mapping 
capabilities for many forms of macroalgae, to examine 
the likewise extensive and coincident collections of 
Sentinel-1 imagery to determine the detection 
capabilities of SAR imagery, particularly as a means to 
increase the number of observations. Based on coincident 
observations and machine learning techniques, the study 
found that two species of macroalgae were detected 
clearly on SAR imagery, Ulva prolifera in the Yellow 
Sea and Sargassum fuitans/natans in the Caribbean Sea. 
The detected macroalgae was found to have enhanced 
radar backscatter compared to the surrounding seas under 
moderate wind speeds, with the enhanced returns 
attributed to various components of the dense macroalgae 
biomass appearing above the ocean surface, increasing 
sea surface roughness and reflecting radar returns. The 
macroalgae species that were not detected showed little 
difference in backscatter compared to the surrounding 
ocean rather than reduced backscatter as might be 
expected, due most likely to either reduced density and/or 
most of the algae remaining below the surface, although 
the SAR brightness relative to the surrounding water may 
depend upon the radar frequency and the instrument 
noise floor.  

4.2.2 Algal blooms and slicks 

Algal blooms have often been observed with SAR 
imagery in regional seas (Gade et al., 1998c; Lin et al., 
2002: Shen et al., 2014), primarily being identified as 
marine slicks, where wind-driven short gravity waves are 
smoothed by the presence of a surface film composed of 
biogenic material released by the growth and decay of 
marine life (e.g. Alpers et al., 2017). Some exceptions 
have been identified where the blooms have also been 
detected by increased contrast compared to the surround 
ocean (Shen et al., 2014; Gade et al., 1998c). Biogenic 
films or slicks are ubiquitous in the global seas especially 
in the coastal regions (Wurl et al., 2011) and may impact 
air-sea CO2 exchange (Wurl et al., 2016). Marine slicks 
are associated with areas of productivity, likely 
increasing after bloom events but appearing to maintain 
a presence for longer periods of time well after bloom 
events. The slicks frequently also serve as surface tracers 
of underlying surface currents including submesoscale 
cyclonic slicks (e.g. Stuhlmacher and Gade, 2020).  

4.2.3 Kelp  

Kelp (Macrocystis sp) is present in the global temporal 
coastal zone and is a foundational species for rocky 
coastal ecosystems. Kelp has also been found to be 
subject to warming and pollution. Kelp has been 
observed extensively with optical sensors but only in a 
cursory way with SAR imagery. Recently Landsat and 
other optical imagery have been used to generate kelp 
products of extent and biomass (e.g. Bell et al., 2020) 
along the California coast. SAR studies of kelp are 
extremely limited, however.  Jensen et al. (1980) 
compared both X-band and L-band images of kelp beds 



 

 

off Santa Barbara CA, which appeared as bright targets 
in X-band but could not be distinguished from open water 
in L-band. A preliminary study is underway utilizing a 
unique collection of L- and S-band airborne SAR 
imagery along with near-coincident Sentinel-1 imagery 
(Jones et al., 2024). Initial results over the same kelp beds 
with a more sensitive SAR indicate that kelp has a bright 
signature at C-band, a signature at S-band that shows 
little-to-no difference compared to the surrounding sea, 
and a reduced, radar-dark signature at L-band.  While not 
definitive, early results suggest that SAR may be useful 
in extending the observations of kelp in conjunction with 
cloud-free optical imagery.  

 4.3 Oil in Sea Ice  

The need to identify oil spills in the Arctic, particularly 
in ice infested waters, has become a topic of some 
urgency in the past 20 years as sea ice has declined and 
shipping begins to expand in the Arctic [Vergeynst et al., 
2018].  Both the overall extent of sea ice coverage has 
declined [Parkinson& DiGirolamo, 2021) and the 
amount of multi-year ice in the Arctic has declined 
[Howell et al., 2023].  Furthermore, the evolution of oil 
in sea ice and very cold water is more complicated than 
for oil in the typical ocean environments usually 
encountered in spills [see, e.g. Fingas & Hollebone, 
2003; Afenyo et al., 2016].  It is doubtful that oil will 
remain on the surface of the ice in thicker ice and closed 
packs [Oggier et al., 2020], so it is likely to be more 
observable with SAR when mixing at the ice margin and 
in new ice, which is also radar-dark, or in open pack 
conditions [Dickens, 2011].  Also, few studies have 
modeled the transport of oil in the Arctic, although this is 
a topic of increasing interest [Nordam et al., 2019]. 

Whether and how best to use SAR to support spill in the 
Arctic has been the topic of study since 2014 [e.g., 
Brekke et al., 2014; Johansson et al., 2020], and in the 
last few years there have been several studies using C-
band SAR in laboratory settings [e.g., Asihene et al., 
2021; Zabihi Mayvan et al., 2024].  However, the full 
capabilities of SAR, particularly multi-frequency 
observations, remains unknown.  Fortunately, there has 
not been a major spill in the Arctic to test SAR in the 
actual environment. 

4.4 Gaps – Other applications  

As discussed in Section 3.3, a remaining challenge is 
distinguishing low backscatter signatures, i.e. isolating 
low winds from marine oil spills from biogenic slicks and 
new/young ice using SAR imagery. In addition, there are 
improvements to be made in modeling of oil slick 
transport, and the study of oil transport in combination 
with sea ice is in its infancy. 

Both satellite and airborne platforms carrying SARs have 
different instrument configurations and observational 
capabilities.  Coupled with the vagaries of the ocean 
surface and conditions that may be present, it has been 

difficult to quantitatively and definitely determine the 
optimum methodology. Perhaps machine learning will 
enable these steps to be determined, but these new 
developments require sufficient validated training data to 
determine clear differentiation.   

5. RECOMMENDATIONS  

5.1 Recommendations - maritime security and 
navigation  

The increasing number of constellations and the 
developments in sensor technology have led to greater 
availability of higher resolution SAR data, attracting an 
audience new to radar imagery applications. 
Stakeholders unfamiliar with radar remote sensing have 
been expressing their interest in remote sensing 
surveillance products to ESA. Although the basic use of 
fast revisit intensity images and InSAR data is becoming 
more standard, there are a variety of processing 
approaches that provide layers of information with 
significant added value over traditional SAR data. 

Advanced signal processing techniques for imaging, 
motion estimation, and feature extraction from moving 
targets exploiting spatial, temporal, and polarimetric 
diversity for radar imaging systems shall be further 
developed and tested for surveillance and security 
applications, including for surveillance of slow-moving 
targets in portal areas. The industrialization of these 
academic studies has the potential to enhance the value 
of low-resolution and openly available EO data for 
addressing novel applications. 

ML is proving useful for maritime security applications.   
To provide the large datasets required for training DL 
algorithms, AIS and similar vessel positioning data needs 
to become routinely available, at low or no cost, and offer 
world-wide coverage.  More accurate and fine details 
regarding vessel classes need to accompany positioning 
data.  Integrating AIS vessel class and positioning data 
with SAR products will facilitate the development of 
training datasets for DL algorithms.  Sentinel-1C/D 
satellites will be outfitted with AIS receivers, but there is 
a need to also populate the Sentinel-1A/B archive with 
correlated AIS datasets, at least for locations with high 
maritime traffic.   

The current reliable and extensive baseline of high revisit 
times offered by ESA, third-party, and other commercial 
SAR missions provides a credible foundation for the 
development of routine applications and services that 
integrate these techniques. Scalable cloud-based 
processing and platform-based environments ensure that 
the required complex processing and data integration can 
be performed within reasonable timeframes and with the 
required level of reliability. Therefore, ESA should 
continue to engage with industry partners, the research 
community, and maritime surveillance stakeholders to 
evaluate emerging methods of utilizing EO data in terms 
of attainable performance for wider use and adoption. 



 

 

ESA-funded activities should continue to include the 
analysis and implementation of data fusion algorithms to 
better detect and track non-cooperative targets and 
identify anomalous actions. 

Further work is needed on the detection of small targets 
of different composition and shape to support the 
detection of small vessels, Aids to Navigation, and debris 
detection. We recommend research and mission design 
and observation coordination between missions and 
space agencies for multifrequency studies and more 
frequent imaging. Given their high resolution, adaptive 
pointing, and rapid revisit potential, the capabilities of 
SmallSat SARs for contributing to this should be 
explored with a short-term goal of determining their 
value for these applications. 

5.2 Recommendations - mineral oil slicks and spills  

More accurate classification of SAR images for 
automated detection of mineral oil slicks is needed.  
There are three recommended avenue for advancement.  
The first is to explore the use of multi-frequency data for 
this purpose; the second to explore the use of short 
timescale repeat imaging with or without multi-
frequency and/or multi-polarization data; and the third is 
development of more sophisticated ML algorithms, 
including those that incorporate relevant physical 
information about the wind and sea states and the 
instrument characteristics (noise floor, incidence angle). 

Multi-frequency studies can be done with dual-frequency 
satellite SARs (of which NISAR is the only one in 
operation or soon to launch), joint observations from 
SARs of different frequency including commercial 
providers to increase frequency diversity, field 
campaigns with a multi-frequency airborne SAR or a 
combination of airborne and spaceborne SARs operating 
at different frequencies.  Fusion of SAR and 
multispectral data should be considered.   

Rapid repeat imaging with SAR deserves more study 
with SAR constellations that can provide repeat imaging 
on the time scale of hours.  More frequent imaging could 
use any of the SAR constellations or a combination of 
instruments, possibly including the commercial SmallSat 
constellations if they are suitable.  We recommend 
systematically evaluating the SmallSat constellations 
(e.g. Iceye, Cappela, Umbra Space) for this application in 
the near future. These small instruments generally have a 
higher noise floor than the SARs from the major space 
agencies, hence are less likely to be useful for 
applications involving radar-dark features. 

A major limitation in the development of ML algorithms 
for spill detection is the scarcity of training data.  A 
concerted effort needs to be made to develop a large and 
diverse training dataset including images containing the 
full range of false positive phenomena, classified, and 
providing this to the community through open-access.  
There also needs to be new DL models developed for 

sensors like NISAR and the SmallSat SAR 
constellations, e.g. X-band from Iceye, Cappela, and 
Umbra Space if their sensors have sufficiently high 
NESZ to be useful.   

The necessary next step beyond detecting and tracking 
oil slicks to make SAR significantly more useful for 
emergency response is to identify the 'actionable' oil, 
slicks of thickness > 50 μm, to target collection and 
dispersion more accurately.  SAR has shown promise for 
this, but more research is needed specifically with low 
noise SARs.  Field campaigns are needed under different 
environmental conditions and with different amounts and 
types of oil.  Higher power spaceborne SARs could 
supply the data, but this is not necessarily feasible.  Data 
from instruments like UAVSAR have been useful, but 
those instruments were designed for a wide range of 
science, not specifically for oil spill response, and 
generally have InSAR capability, which is not needed for 
the ocean applications.  Less expensive, single or dual 
polarization instruments could do the job, flying at lower 
altitude to improve SNR [Jones & Holt, 2018].  We 
recommend that ESA support development and test of 
these instruments, and campaigns using them. Ideally, 
this would lead to commercialization of the capabilities 
or operation by response agencies if research shows the 
value of the technology.  

5.3 Recommendations - other applications  

Recommendations for algae monitoring and detecting oil 
in sea ice are the same as those for mineral oil spills 
(Section 5.2).  In addition, continued and frequent 
observations of the Arctic in all bands is needed, 
particularly with ALOS-2/4 because NISAR, the other L-
band SAR that is near launch, will not image above 
77.5°N. 

5.4 Commonalities in Recommendations  

Further study of SmallSat constellations is recommended 
for all applications, along with additional multi-
frequency, multi-polarization, multi-viewing-angle 
observations. Coordination of observation plans, and in 
the future even coordination of missions, is 
recommended to decrease the time between imaging 
considering all assets.   

Development of larger and more diverse datasets (in sites 
covered, environmental conditions, and instruments) for 
ML algorithm development is needed.  Continued 
support for research is always needed.  Support for field 
campaigns is requested, including to support oil slick 
characterization, particularly thickness, and validation of 
new algorithms.  

Establishment of 'supersites' with in situ instruments or 
additional remote sensing observations and freely 
available products from ESA, NASA, JAXA, DLR, and, 
if possible ASI, ISRO, and other agencies operating 
SARs are needed to support algorithm development and 



 

 

validation. Possible supersites should include areas with 
significant amounts of marine debris and severe and 
sustained oil pollution (i.e., the Niger Delta). 

The attendees at SeaSAR 2023 identified a need for a 
curated public repository for resources, similar to the 
Ocean Virtual Portal, that archives the datasets necessary 
for the ocean applications identified here, and is funded 
and staffed at a level where it becomes a reliable resource 
for the community. This would allow searching, viewing, 
and downloading collocated SAR and optical data, along 
with ancillary datasets (wind, waves, currents), and any 
in-situ data made publicly available.  Science traceability 
is required for the archive datasets.  The archived datasets 
should have standardized metadata and associated 
documentation on their sources, processing, and how the 
information was derived.  DOIs must be assigned so that 
they can be cited in literature.  An open-access site is also 
needed for sharing open-source code, maintaining 
released, vetted versions, documenting the full 
providence of the code, and including example output. 
There is also a need for assets facilitating cloud 
processing, preferably at low or no cost to those with a 
true need for the information, but without resources to 
cover the costs otherwise.   
 
6. SUMMARY 

As SAR data has become more accessible to researchers 
and operational users in the last decade, its value for 
ocean applications has become clear.  SAR is now a vital 
source of information for monitoring the coastal oceans, 
particularly for oil spill detection and identifying and 
tracking vessels.  Major advances in understanding how 
SAR can be used to detect, track, and characterize slicks 
have come about because of observations with low noise 
SAR instruments operating at frequencies from X-band 
to L-band.  Remote sensing information is playing a 
crucial role in enhancing maritime situational awareness, 
addressing detection of illegal trafficking at sea and 
illegal fishing, but also hybrid threats - including 
monitoring integrity and operations of surface/sub-
surface critical infrastructures and assessing the depletion 
of natural resources. Including vessel class and position 
data with SAR products will enable development of 
training data sets for DL algorithms. 

Decreasing the temporal baseline between imaging, 
considering the full constellation of SARs, is very 
important for ocean observations. Besides providing 
support for research, the space agencies can support 
advancement by coordination of their observation plans, 
and even in the future of their missions to the extent 
possible given individual objectives.  This will enable the 
community to obtain multi-frequency and multi-look-
direction observations with shorter imaging interval.   

The availability of free and low-cost SAR data, 
development of new processing techniques, and deep 

learning methods applied to object identification in SAR 
imagery supports continued advancement for both 
maritime navigation and oil spill surveillance.  Other 
identified high priority actions are supporting the 
development of training datasets for ML and establishing 
and maintaining an archive for ocean application 
datasets. 
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